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Abstract— Bayesian modeling has been recognized as a pow-
erful approach to system identification, not least due to its in-
trinsic uncertainty quantification. However, despite many recent
developments, Bayesian identification of nonlinear state space
models still poses major computational challenges. We propose
a new method to tackle this problem. The technique is based
on simulating a so-called thermostat, a stochastic differential
equation constructed to have the posterior parameter distri-
bution as its limiting distribution. Simulating the thermostat
requires access to unbiased estimates of the gradient of the log-
posterior. To handle this, we make use of a recent method for
debiasing particle-filter-based smoothing estimates. Numerical
results show a clear benefit of this approach compared to
a direct application of (biased) particle-filter-based gradient
estimates within the thermostat.

I. INTRODUCTION

Data-driven modeling of dynamic phenomena has long
been a task of central importance in many areas of science
and engineering. In many applications, especially those in-
volving decision making, quantifying the accuracy of these
models is essential. Bayesian inference offers a principled
approach to uncertainty quantification, especially in the
‘finite-data’ regime, where asymptotic variance estimates
from prediction error methods may not be applicable [1].
Indeed, since the early 1980s [2], Bayesian inference has
been recognized as a valuable paradigm for uncertainty
quantification in system identification.

For many models of interest, the requisite computations
for exact Bayesian inference cannot be carried out in
closed form. Among the methods for approximate inference,
Markov chain Monte Carlo (MCMC), including the ven-
erable Metropolis-Hastings algorithm, has gained immense
popularity. The key to efficient application of MCMC is a
proposal distribution that allows the Markov chain to rapidly
reach the stationary distribution. However, designing such a
proposal is a formidable task, especially in high dimensions.

Many strategies for designing effective proposals make use
of the gradient of the log-posterior most notably Hamiltonian
MC [3]. In applications where only stochastic approxima-
tions to the gradient are available (or desirable), a class
of sampling methods known as thermostats have recently
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gained attention [4], [5]. A thermostat is a stochastic dif-
ferential equation (SDE) that employs feedback control to
compensate for noisy gradients; cf. §II-B. Though capable
of handling noise, thermostats require unbiased estimates of
the log-posterior gradient. For nonlinear state-space models,
gradient computations based on particle approximations of
the Fisher identity lead to biased estimates; cf. §III-A, and
as such, are incompatible with thermostats.

In this paper, we leverage recent methods [6] for debi-
asing expectations with respect to particle approximations
of smoothing distributions, including gradient computations,
to enable the application of thermostats to the problem of
Bayesian identification of nonlinear state-space models.

A. Related work

Using dynamics to construct efficient proposals for
MCMC has a long tradition. Hamiltonian MC (HMC) drew
inspiration from statistical physics [7], before being repur-
posed for Bayesian inference [3]. It has been recognized
as one of the most powerful approaches to Monte Carlo
sampling, in particular for high-dimensional problems. In
the era of ‘big data’, there has been considerable interest
in extending such methods to handle stochastic gradients,
which typically arise when datasets are subsampled for
computational tractability. In [8], Langevin (i.e. Brownian)
dynamics driven by stochastic gradients was shown to sample
from the desired distribution, provided that the sequence of
stepsizes decreases to zero; cf. also [9]. Other strategies
attempt to estimate the variance of the stochastic gradient
and compensate by adjusting the magnitude of the artificially
injected noise accordingly [10], [11]. Such methods are sen-
sitive to errors in the variance estimate [4], which motivates
the use of thermostats [12] to compensate for the gradient
noise via feedback control, cf. [4], [5].

When it comes to Bayesian identification of nonlinear
state-space models, we not only need a way to sample the
model parameters, but also to marginalize out (or sample)
the system states. A principled way of accomplishing this is
offered by the family of methods known as particle MCMC
[13], in which MCMC sampling is used for the model
parameters while at the same time sequential Monte Carlo
(SMC) is used to ‘handle’ the unknown states.

For instance, particle Metropolis-Hastings (PMH [13],
[14]) uses SMC to marginalize the system states, effectively
targeting the marginal parameter posterior distribution. A
challenge with PMH, however, is the design of effective
proposal distributions [15], i.e., those that achieve fast mixing
(convergence to the stationary distribution). This is par-
ticularly challenging when the model parameter is high-



dimensional. Using, e.g., HMC in the context of PMH is
far from straightforward (see, e.g., [16] for a discussion).

An alternative type of PMCMC is particle Gibbs [13],
[17], [18], in which SMC is used to simulate the states
alternately with the parameters using a Gibbs scheme. These
methods can however suffer from slow convergence when
there are strong dependencies between states and parameters.

In this work we shall circumvent these limitations of PM-
CMC by instead using a thermostat which is able to exploit
gradient information, akin to HMC (as explained above).
This is enabled by using SMC to compute unbiased estimates
of the gradient of the log-posterior, thereby resulting in a
combination of Markov chain sampling and SMC which is
distinct from the family of PMCMC methods.

B. Intuitive preview of main idea

The stochastic gradient methods discussed above, includ-
ing thermostats, all assume access to unbiased gradients,
which is the case when stochasticity is due to subsampling
i.i.d. data. For state-space models, stochasticity is inherent.
Moreover, conventional methods for computing gradients,
based on smoothing expectations and the Fisher identity (cf.
§III-A), lead to biased estimates. The key idea in this work
is to leverage recently developed debiasing techniques, cf.
[19] in particular and also [6], [20], [21], [22], to generate
unbiased estimates of the gradient of the log-likelihood
function. These estimates can be ‘plugged-in’ to thermostats
to create an SDE, trajectories of which correspond to samples
from the parameter posterior distribution. We now briefly
illustrate this key idea with a numerical example. Consider
the nonlinear state-space model given by

xt+1 = θ
x3t − xt
1 + x2t

+ ut + wt, yt = x2t + vt, (1)

where wt, vt, x0 are normally distributed according to
N
(
0, 0.12

)
. Here, θ ∈ R is the single unknown parameter

of interest, with true value θ = 0.5.
Given observed data y and u our goal is to draw samples

from the parameter posterior distribution, using a thermostat.
When biased estimates of the gradient (of the log-likelihood)
are supplied to the thermostat, cf. Fig. 1(a), the resulting
samples fail to target the correct distribution, cf. Fig 1(c). In-
deed, the systematic bias in the gradient clearly overestimates
the posterior variance. In contrast, when unbiased gradients
using the proposed procedure are used, cf. Fig. 1(b), the
target distribution is left invariant, cf. Fig 1(c).

The rest of the paper proceeds as follows: a precise prob-
lem statement is given in §II-A, before a brief introduction to
thermostats for Bayesian inference in §II-B. The method to
debias gradients is detailed in §III, and the final algorithm in
presented in §IV. An additional numerical example, namely,
identification of a Wiener system, is presented in §V.
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(a) Biased gradients from the FFBSi smoother (100 realizations per θ).
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(b) Unbiased gradients from the proposed method (100 realizations per θ).
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(c) Posterior distributions from thermostat using the gradients above.

Fig. 1: Biased gradients lead to incorrect posteriors; cf. §I-B for details.

II. PRELIMINARIES

A. Problem statement

This paper is concerned with identification of probabilistic
state-space models of the form

xt|xt−1, ut, θ ∼ f(xt|xt−1, ut, θ), x0 ∼ µ(x0, θ). (2a)
yt|xt, ut, θ ∼ g(yt|xt, ut, θ), θ ∼ p(θ). (2b)

Here xt denotes the latent (unobserved) state, ut and yt
denote the observed inputs and outputs, respectively, and θ
denotes the unknown model parameters, with prior distri-
bution p(θ). For brevity, we shall drop explicit dependence
on ut from the notation, as is customary. The model (2)
describes a very broad class of dynamical systems; in this
paper we shall impose a number of further assumptions. For
the purpose of applying SMC we shall assume that g() can
be evaluated point-wise. One way to satisfy this requirement
is to assume additive measurement noise vt, i.e.,

yt = g(xt, θ) + vt =⇒ g(yt|xt, θ) = pv(yt− g(xt, θ)) (3)

where v ∼ pv(v). We also make the non-restrictive assump-
tion that we have access to deterministic functions M and
F , as well as the ability to sample random variables Ut for



t ≥ 0, such that samples from µ(x0, θ) and f(xt|xt−1, θ)
can be generated by evaluating M(U0) and F (xt−1, Ut, θ),
respectively.

Given observed data y = {yt}Tt=1 (and u = {ut}Tt=1) our
goal is to approximate the parameter posterior distribution

p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

, where p(y|θ) =

∫
p(x, y|θ)dx.

These integrals are, in general, intractable. As an alternative
to exact computation, we instead wish to draw samples
θ ∼ p(θ|y) from the posterior. Many strategies for parameter
posterior sampling have been proposed, cf. §I-A. In this
work, we adopt a MCMC approach based on adaptive
thermostats, which we review next.

B. Adaptive thermostats for Bayesian inference

In this subsection, we provide a brief introduction to
adaptive thermostats for Bayesian inference (cf. §I-A for
references). The methods were developed in the field of
statistical physics for simulating molecular dynamics, and
we shall explain the key ideas in this context. Consider a
physical system, in thermal equilibrium with a heat bath
at constant temperature T . The position(s) q ∈ Rd and
momentum(s) ρ ∈ Rd of the molecules constitute the
state of the system. In thermal equilibrium, these states are
distributed according to the canonical distribution pβ(q, ρ) ∝
exp(β−1H(q, ρ)), where H(q, ρ) = U(q) + K(ρ) denotes
the Hamiltonian with potential energy U and kinetic energy
K = 1

2ρ
′M−1ρ, and β is proportional to the reciprocal

temperature. Here M = mI , where m denotes the mass
of each molecule. It has been shown [23] that the following
(second order) Langevin dynamics

dq =M−1ρ dt, (4a)

dρ = −∇U(q) dt− γρdt+
√

2β−1γM1/2dW, (4b)

ergodically samples the canonical distribution pβ(q, ρ). Here,
γ is a ‘friction constant’ for the damping due to interaction
with the heat bath, and dW is a vector of Wiener increments.

The key point is: the stochastic dynamical system (4)
generates trajectories q that represent samples from the
distribution p̄β(q) ∝ exp(−β−1U(q)). From the perspective
of statistical physics, a given potential energy U leads
to a particular canonical distribution p̄β . For the purpose
of statistical inference, given a probability distribution of
interest (a ‘target distribution’) φ(θ), one can let q denote
θ and choose U(q) ∝ − log φ(q) such that the canonical
distribution p̄β conincides with φ.

If the potential gradient ∇U is replaced with a noisy
approximation ∇Ũ , (4) will no longer sample from the
canonical distribution. The canonical ensemble satisfies the
thermal equilibrium condition kBT = 2

dE[K(ρ)], where kB
is the Boltzmann constant. Roughly speaking, the noise asso-
ciated with ∇Ũ constitutes energy perturbations that disrupt
the requisite thermal equilibrium. To continue to sample
from pβ , it is necessary to correct for these perturbations by
regulating the temperature. One possibility is to introduce

feedback control in the form of a thermostat, which leads to
the augmented system

dq =M−1ρ dt, (5a)

dρ = −∇Ũ(q) dt− ζρdt+ σaM1/2dW, (5b)

dζ = ki
(
ρ′M−1ρ− dkBT

)
dt. (5c)

One can interpret ζ as a variable friction coefficient, adapted
via (integral) feedback control (with gain ki) to regulate
the temperature (kinetic energy) of the system (5c), e.g.,
when K is too large, ζ will grow, increasing the viscous
damping so as to reduce ρ. Injection of the artificial noise
σaM1/2dW enables (5) to be related to a standard Itō
stochastic differential equation [5].

III. UNBIASED GRADIENT APPROXIMATION

The adaptive-thermostat method described in §II-B as-
sumes access to unbiased stochastic estimates of the gradient
∇U . For the general class of state-space methods considered
in this paper, methods to approximate the gradient of the log-
likelihood yield biased estimates, cf. §III-A. In this section,
we present a method for generating unbiased gradient esti-
mates, based on recently developed Rhee-Glynn debiasing
techniques.

A. Biased gradients from the Fisher identity

To apply the adaptive-thermostat (5) to the problem of
posterior sampling for state-space models, one must choose
U(θ) ∝ − log p(θ|y). From Bayes’ rule, a natural choice is
U(θ) = − log p(y|θ)p(θ). Let `(θ) := log p(y|θ) denote the
log-likelihood. The gradient of `(θ) is given by the Fisher
identity [24],

∇θ`(θ) =

∫
∇θ log p(x, y|θ)p(x|y, θ)dx, (6)

where p(x|y, θ) denotes the so-called smoothing distribution.
With the exception of the linear, Gaussian case, for models
of the form (2) the smoothing distribution is not available
in closed-form, and thus (6) must be approximated, e.g., by
Monte Carlo methods:

∇θ`(θ) ≈
1

M

∑M

i=1
∇θ log p(x̃i, y|θ), (7)

where x̃i
approx.∼ p(x|y, θ) denote approximate samples from

the smoothing distribution, generated by, e.g., a particle
smoother [25], [26]. The stochastic gradient in (7) gives a
biased approximation of ∇θ`(θ), and is therefore unsuitable
for use in the adaptive-thermostat; cf. Fig 1 for an illustration.

B. Debiased gradients

To obtain unbiased estimates of ∇θ`(θ) we employ the
so-called Rhee-Glynn debiasing technique [6]. Given a func-
tional h(x) and smoothing distribution π(x) the purpose of
the procedure is to produce unbiased estimates of the expec-
tation

∫
h(x)π(x)dx =: π(h). To approximate ∇θ`(θ) via

the Fisher identity (6), we choose h(x) = ∇θ log p(x, y|θ)
and π = p(x|y, θ). The debiasing method proceeds as
follows: Suppose we have two Markov chains, (X(n))n≥0



and (X̃(n))n≥0 with the following properties: i) each has
invariant distribution π, ii) for all n, X(n) and X̃(n) have
the same marginal distribution, i.e., E[X(n)] = E[X̃(n)], iii)
the two chains are coupled in such a way that there exists
an almost surely finite meeting time τ , i.e., X(n) = X̃(n−1)

for all n ≥ τ . These properties imply:

π(h) = lim
n→∞

E[h(X(n))] (8)

= E[h(X(0))] +
∑∞

n=1
E[h(X(n))]− E[h(X̃(n−1))]

= E
[
h(X(0))] +

∑τ

n=1
h(X(n))− h(X̃(n−1))

]
.

The first equality follows from property (i), the second from
property (ii), and the third by property (iii), after interchang-
ing expectation and summation, as X(n) = X̃(n−1) for all
n ≥ τ allows us to truncate the infinite sum. We define the
Rhee-Glynn estimator of π(h) as

H0 := h(X(0)) +
∑τ

n=1
h(X(n))− h(X̃(n−1)), (9)

which, from (8), is an unbiased estimate. In the following
subsections we describe how Markov chains (X(n))n≥0
and (X̃(n))n≥0 with the requisite properties (i)-(iii) can be
constructed for state-space models of the form (2).

C. Conditional particle filter for smoothing

The first requirement is that the Markov chains (X(n))n≥0
and (X̃(n))n≥0 are invariant to the smoothing distribution π.
We make use of a variant of the particle filter (PF) [27],
[28], [29] called a conditional particle filter (CPF) [13],
cf. Algorithm 1. The procedure amounts to producing a
weighted particle system {wjt , x

j
t}
j=1:N
t=1:T , as in the regular PF,

except that one of the trajectories (i.e., sequence of particles)
is fixed to a given ‘reference trajectory’. The CPF returns a
trajectory by randomly selecting one of the particles with
probability given by the weights, w1:N

T , at the final time. For
a reference trajectory Xref = x̄, sampling a new trajectory
X = x from the CPF is denoted X ∼ CPF(Xref, ·). The
CPF defines a Markov kernel on the space of trajectories that
leaves π invariant. A Markov chain (X(n))n≥0 constructed
by sampling X(n) ∼ CPF(X(n−1), ·) thereby satisfies satis-
fies property (i).

Line 4 of Algorithm 1 is the resampling step. Here,
r(w1:N

t−1) denotes a distribution over {1, . . . , N}N−1. An-
cestor ajt is drawn from a distribution over {1, . . . , N}
with probabilities given by the weights w1:N

t , for all j =
1, . . . , N −1 and the N th ancestor is set deterministically as
aNt = N according to the conditioning.

D. Coupled conditional particle filters

To satisfy properties (ii) and (iii), i.e. the requirement
that the Markov chains (X(n))n≥0 and (X̃(n))n≥0 have
the same marginal distribution for each n and ‘meet’ in
finite time τ , respectively, it is necessary to couple the CPF
chains in some way. One possibility is to employ the so-
called coupled conditional particle filter (CCPF) [19], cf.
Algorithm 2. Coupling between the CPF chains occurs via
two mechanisms in the CCPF. First, the same realization of

Algorithm 1: Conditional particle filter (CPF)
Data: outputs y, reference trajectory x̄, parameters θ,

number of particles N
1 Draw U j0 and set xj0 = M(U j0 , θ) for j = 1 : N − 1,

xN0 = x̄0 ;
2 Set wj0 = N−1 for j = 1 : N ;
3 for t = 1 : T do
4 Draw ancestors a1:N−1t−1 ∼ r(w1:N

t−1), and set
aNt−1 = N ;

5 Draw U jt and set xjt = F (x
ajt−1

t−1 , U
j
t , θ) for

j = 1 : N − 1, xNt = x̄t ;
6 Compute wjt = g(yt|xjt , θ) for j = 1 : N , and

normalize: w̄t =
∑
j w

j
t , wjt ← wjt/w̄t ;

7 end
8 Draw bT from discrete distribution over 1 : N with

probabilities w1:N
T ;

9 Set bt = a
bt+1

t for t = T − 1, . . . , 0 ;
10 return x = (xb00 , . . . , x

bT
T ) ;

the random variable U is used to propagate the state of both
chains, cf. line 5. Second, the resampling (line 4) and tra-
jectory selection (line 8) is performed via a joint distribution
over the indices for both chains. Specifically, the distribution
r̄(w1:N

t−1 , ŵ
1:N
t−1) is such that ancestors (ajt , â

j
t ) are sampled

in order to maximize the probability of ajt = âjt under the
marginal constraints P(ajt = k) = wkt and P(âjt = k) = ŵkt ,
for all k = 1, . . . , N (cf. [19] for details). This sampling
strategy ensures that each CPF kernel leaves π invariant.
The two coupling mechanisms combined are sufficient to
ensure finite meeting time τ , cf. [19, §3]. However, the joint
distribution over {1, . . . , N}2 can be designed to maximize
the probability that ajt = âjt . This in turn minimizes τ which
reduces the number of iterations (and hence computational
complexity) of the unbiased estimator, cf. (9). For specific
coupled sampling strategies, cf. [19, §2.2].

To summarize, the CCPF takes two reference trajectories
Xref = x̄ and X̃ref = x̃, and returns two new trajectories
X and X̃ from CPFs, coupled as described in Algorithm 2.
We denote this operation by (X, X̃) ∼ CCPF(Xref, X̃ref, ·).
The CCPF then defines a Markov kernel on the space of
pairs of trajectories. The Markov chain formed by evolving
the kernel (X(n+1), X̃(n)) ∼ CCPF(X(n), X̃(n−1), ·) is such
that X(n) ∼ CPF(X(n−1), ·), X̃(n) ∼ CPF(X̃(n−1), ·), with
τ := inf{n : X(n) = X̃(n−1)} finite in expectation.

E. Final Rhee-Glynn debiased gradient approximation

With the specification of the CCPF in §III-D we now
have the Markov chains required to implement the debiasing
method described in §III-B. The procedure is detailed in
Algorithm 3. Line 1 requires sampling the initial trajectories
from a ‘particle filter’. This amounts to running a PF and then
returning a randomly selected trajectory from the weighted
particle system, with probability given by the weights at the
final time, as in line 9 of Algorithm 1. In fact, the entire



Algorithm 2: Coupled conditional PF (CCPF)
Data: outputs y, reference trajectories x̄ and x̃,

parameters θ, number of particles N
1 Draw U j0 , set xj0 = M(U j0 , θ) and x̂j0 = M(U j0 , θ),

for j = 1 : N − 1, xN0 = x̄0 and x̂N0 = x̃0 ;
2 Set wj0 = N−1 and ŵj0 = N−1 for j = 1 : N ;
3 for t = 1 : T do
4 Draw ancestors

(a1:N−1t−1 , â1:N−1t−1 ) ∼ r̄(w1:N
t−1 , ŵ

1:N
t−1), and set

aNt−1 = N and âNt−1 = N ;

5 Draw U jt and set xjt = F (x
ajt−1

t−1 , U
j
t , θ) and

x̂jt = F (x̂
âjt−1

t−1 , U
j
t , θ) for j = 1 : N − 1,

xNt = x̄t and x̂Nt = x̃t ;
6 Compute wjt = g(yt|xjt , θ) and ŵjt = g(yt|x̂jt , θ)

for j = 1 : N , and normalize: w̄t =
∑
j w

j
t ,

wjt ← wjt/w̄t, ¯̂wt =
∑
j ŵ

j
t , ŵjt ← ŵjt/

¯̂wt ;
7 end
8 Draw (bT , b̂T ) ∼ r̄(w1:N

T , ŵ1:N
T ) ;

9 Set bt = a
bt+1

t and b̂t = â
b̂t+1

t for t = T − 1, . . . , 0 ;
10 return x = (xb00 , . . . , x

bT
T ) and x̂ = (x̂b̂00 , . . . , x̂

b̂T
T ) ;

process of sampling the trajectories from the PF, as in line 1,
is identical to the CPF described in Algorithm 1, if one
simply ignores the N th particle (i.e. the reference trajectory).

Algorithm 3: Rhee-Glynn gradient estimation
Data: gradient of joint log-likelihood

h(x) = ∇θ log p(x, y|θ), parameters θ
1 Draw X(0) and X̃(0) from the particle filter ;
2 Draw X(1) ∼ CPF(X(0), ·) ;
3 Set n = 1 ;
4 while n ≤ τ , τ := inf{n : X(n) = X̃(n−1)} do
5 Draw (X(n+1), X̃(n)) ∼ CCPF(X(n), X̃(n−1), ·) ;
6 n← n+ 1
7 end
8 return

H0 := h(X(0)) +
∑τ
n=1 h(X(n))− h(X̃(n−1)) ;

IV. ADAPTIVE-THERMOSTAT FOR STATE-SPACE MODELS

We are now in a position to present the main contribution
of this paper: an adaptive-thermostat for parameter posterior
sampling in state-space models. We combine the adaptive-
thermostat outlined in §II-B with the method for debiasing
log-likelihood gradient estimates presented in §III. To imple-
ment the scheme, it is necessary to employ a discretization of
the continuous time Nosé-Hoover dynamics in (5). A simple
forward Euler discretization, with stepsize ε, yields:

qt+1 = qt +M−1ρtε, (10)

ρt+1 = ρt −∇Ũ(qt+1)ε− ζtρtε+ σaM1/2e, e ∼ N (0, I) ,

ζt+1 = ζt + ki
(
ρ′t+1M−1ρt+1 − dkBT

)
ε.

We note that it is possible to employ more advanced (e.g.
higher order) discretization strategies, which permit the use
of larger stepsizes [5]. The stochastic gradient ∇Ũ(qt+1) in
(10) is given by

∇Ũ(qt+1) = H0 + ∇θ log p(θ)|θ=qt+1
(11)

where H0 is computed by running Algorithm 3 with input
θ = qt+1. Samples qt generated by simulating (10) are
then approximately distributed according to p(θ|y). We say
approximately, as (10) is only guaranteed to leave the target
canonical distribution invariant when the stochastic gradient
∇Ũ is given by the exact gradient corrupted with additive
Gaussian noise of unknown but constant covariance, i.e.
∇Ũ(q) = ∇U(q) + e with e ∼ N (0,Σ).

A. Discussion

We conclude with a brief discussion of some extensions,
limitations and practical considerations associated with the
proposed approach, beginning with the assumption that
stochasticity in the gradient is due to additive Gaussian noise.

1) State-dependent noise covariance: In some applica-
tions, it is more appropriate to model the stochasticity in
the gradient ∇Ũ by additive Gaussian noise with covariance
that is state-dependent, i.e., ∇Ũ(q) = ∇U(q) + e with
e ∼ N

(
0, Σ̄(q)

)
. In this setting, it is desirable to introduce

additional damping in (5), that is a function of the empirical
covariance of the stochastic gradient. The resulting sampler
is known as the Covariance-Controlled Adaptive Langevin
thermostat and, under these assumptions, has been shown to
leave the canonical distribution invariant; cf. [30] for details.

2) Algorithm parameters: We can distinguish between
two types of parameters the must be specified to operate
the thermostat. First, there are those that arise due to the
statistical mechanics interpretation of the thermostat as a
method for simulating from a canonical ensemble, e.g.,
m, T , ki. The parameters affect the molecular dynamics,
including ρ and ζ, but not the distribution p̄β over q which
is of primary interest for inference. It is common to set m,
dkBT , and ki to unity [4]. Second, there are the parameters
that have a greater influence on the efficacy of the thermostat
to sample from the desired distribution, namely the stepsize
ε and artificial noise variance σ2

a. Too small a stepsize can
result in slow exploration of the parameter space, whereas
too large a stepsize can result in excessive relative error or
even divergence. For a discussion on balancing this tradeoff
via selection of ε and σ2

a, cf. [5, §4].
3) Computational complexity: Roughly speaking, the

computational complexity of the proposed method is com-
parable to other particle MCMC methods, in that it uses the
same underlying machinery, namely, the particle filter; cf.,
e.g., [15, §3.1] for a discussion on computational complexity
of such methods. One of the key factors that determines the
computational cost of the debiasing method presented in §III
is the meeting time, τ . Specifically, the sooner the chains
meet, the fewer the required realizations from the CCPF. For
coupled sampling strategies to minimize τ , cf., [19, §2.2].



V. NUMERICAL EXAMPLES

A. Illustration on scalar nonlinear system

We now return briefly to the illustration presented in Fig
1, and fill-in the remaining details. We assume a uniform
prior over θ ∈ R, i.e. p(θ) ∝ 1. This implies that p(θ|y) ∝
p(y|θ), which means that we can approximately evaluate
the posterior (pointwise, after normalization) using a PF.
This PF approximation provides our baseline for comparison.
Problem data is generated by sampling ut ∼ N (0, 1) for
t = 1 : 50 and simulating (1) with the true parameter,
to obtain a realization of y. The biased gradient estimates
in Fig 1(a) are generated using the MC approximation of
the Fisher identity in (7), with samples x̃i from a forward
filtering backward simulation (FFBSi) particle smoother. The
posteriors in Fig 1(c) represent histograms (50 bins) of the
position trajectory qt, after running the thermostat (10) for
104 timesteps (discarding the first 103 samples for burn-in).

Finally, we note that the debiasing method introduces
additional variance to the stochastic gradient, compared to
the FFBSi. Nevertheless, the thermostat (with the same
tuning parameters for each gradient method, ε = 0.05 and
σa = 1) is able to effectively dissipate this additional noise.

B. Wiener system

In this experiment we consider identification of a Wiener
system, comprised of the transfer function

x̄t = G(z) =
θ5z
−1 + θ6z

−2 + θ7z
−3 + θ8z

−4

1 + θ1z−1 + θ2z−2 + θ3z−3 + θ4z−4
ut + wt,

in series with the static output nonlinearity y = γ(x̄) + vt =
θ9x̄

2
t + θ10x̄

3
t + vt. Here, wt and vt denote process and

measurement noise, respectively, and are each distributed
according to N

(
0, 0.12

)
. The true parameters are given by

θ = (0.8, 0.1,−0.4, 0.1, 0.4, 0.9, 0.5, 0.6, 1, 0.5). We assume
a uniform prior over θ ∈ R, i.e. p(θ) ∝ 1. Problem data y was
obtained by simulating the system, with the true parameters,
excited by ut ∼ N (0, 0.4) for t = 1 : 50.

To draw samples from the posterior, we apply two ther-
mostats (10), with ε = 0.05, σa = 1 and all other parameters
set to unity. The first uses stochastic gradients computed
using the approximate Fisher identity (7) with states x̃ from
a fixed-lag smoother [31] (N = 2 particles, lag = 5). The
second uses stochastic gradients computed with the proposed
debiasing method (N = 2 particles). Each thermostat was
simulated for 10 × 103 timesteps; after discarding the first
103 samples for burn-in, the resulting position trajectories
qt = θ ∈ R10, converted to Bode representations of G and
(static) γ(·), are depicted in Fig 2.

Unlike the illustration in §I-B, (an approximation) of the
‘ground truth’ posterior is not available for comparison.
Nonetheless, at lower frequencies in the Bode plots, espe-
cially for the magnitude, as well as the static nonlinearity γ,
we observe less bias (relative to the true system) in samples
generated using the proposed debiased gradients.

(a) Bode plots for linear component of Wiener system.
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(b) Static output map for Wiener system.

Fig. 2: Samples from two thermostats targeting the parameter posterior
distribution of the Wiener system; cf. §V-B for details. ‘Fixed-lag’ makes use
of biased stochastic gradients from a fixed-lag smoother; ‘proposed’ denotes
stochastic gradients from the debiasing method outlined in this paper.
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