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Abstract: In the application of the Expectation Maximization (EM) algorithm to identification
of dynamical systems, latent variables are typically taken as system states, for simplicity. In
this work, we propose a different choice of latent variables, namely, system disturbances. Such
a formulation is shown, under certain circumstances, to improve the fidelity of bounds on the
likelihood, and circumvent difficulties related to intractable model transition densities. To access
these benefits, we propose a Lagrangian relaxation of the challenging optimization problem that
arises when formulating over latent disturbances, and fully develop the method for linear models.
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1. INTRODUCTION

System identification is the process of building approxi-
mate models of dynamical systems from measured data.
A common approach is to specify a family of statistical
models and choose the parameters of maximum likelihood.
Such Maximum Likelihood (ML) methods have been stud-
ied extensively and enjoy desirable properties, such as
strong consistency; see, e.g., Ljung (1999). Despite this,
local maxima in the likelihood function and difficulties in
computation of the gradient can mean that application of
the method is not always straightforward.

The Expectation Maximization (EM) algorithm is a tech-
nique to iteratively solve general ML estimation problems
that has proved viable when gradients of the likelihood
are difficult to compute. In the context of system identifi-
cation, it has been used to great effect: see e.g. Schön et al.
(2011). The key to the algorithm is the decomposition of
the likelihood function based on a user-specified choice of
latent variables. Typically, latent variables are chosen so
as to simplify the ensuing optimization problem as much
as possible; e.g., in Gibson and Ninness (2005) choosing
internal system states as latent variables is shown to con-
vexify the search for the ML parameters.

This property has made internal systems states the de
facto choice of latent variables in the application of EM to
system identification. However, recent research on convexi-
fication of simulation error minimization, see e.g. Tobenkin
et al. (2010), has expanded the class of value functions that
can be efficiently optimized, thereby presenting opportu-
nities for different choices of latent variables.
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This paper offers an investigation into the merits of for-
mulating the EM algorithm over latent system distur-
bances, rather than latent systems states, and proposes
a novel strategy for convexifying the challenging optimiza-
tion problem that ensues.

2. PRELIMINARIES

2.1 Problem formulation

Consider a class of state space models of the form

xt+1 = aθ(xt, ut) + wt, (1a)

yt = gθ(xt, ut) + vt, (1b)

where xt ∈ Rnx denotes the unobserved state variable, and
ut ∈ Rnu , yt ∈ Rny denote the observed input and output,
respectively. The nonlinear functions aθ and gθ are finitely
parametrized by θa and θg, respectively. The disturbance
sequence, WT = {wt}Tt=1, is assumed to be distributed
according to

WT ∼ pθw(WT ), (2)

where the PDF is of known form (e.g. Gaussian) but
parametrized by unknown θw. The measurement noise, vt,
is assumed to be a zero mean Gaussian white noise process,
and the initial condition x1 is also assumed to be normally
distributed,

vt ∼ N (0,Σv), (3a)

x1 ∼ N (µ,Σ1). (3b)

All unknown model parameters are grouped into a single
vector, θ = {θa, θg, θw,Σv, µ,Σ1}.

Given sequences of measured inputs UT = {ut}Tt=1 and
outputs YT = {yt}Tt=1 our task is to find the maximum
likelihood estimate of the model parameters θ, defined

θML = arg max
θ
pθ(UT , YT ), (4)



where pθ(UT , YT ) is the joint density (likelihood) of the
observations UT and YT . It is often more convenient to
work with the log likelihood, Lθ(YT ) , log pθ(UT , YT ).
Henceforth, ut is implicit in the notation, for brevity.

2.2 The Expectation Maximization algorithm

In this section we review the basic principles of ML estima-
tion via the EM algorithm; refer to Dempster et al. (1977)
for further details. The algorithm is predicated on the
assumption that there exists a set of latent (read: ‘hidden’
or ‘unobserved’) variables, Z, such that the ‘complete’ or
joint log likelihood function

Lθ(YT , Z) = log pθ(YT , Z)

is easier to optimize than the incomplete log likelihood
Lθ(YT ). These latent variables may be thought of as the
data that we ‘wish’ we could observe, in the sense that the
problem would be more straightforward if Z was available.

The maximum likelihood problem can be related to the
joint likelihood by marginalizing over the latent variables

θML , arg max
θ
Lθ(YT ) = arg max

θ
log

∫
pθ(YT , Z)dZ.

This is a formidable optimization problem, as marginaliza-
tion has separated the logarithm from the likelihood. The
idea behind the EM algorithm is to take some estimate
θk of the parameters, use this to build a lower bound for
Lθ(YT ), then maximize the lower bound in place of the
likelihood function to improve our estimate of θ.

For an arbitrary distribution ρ(Z), Jensen’s inequality
gives∫

ρ(Z) log
pθ(YT , Z)

ρ(Z)
dZ ≤ log

∫
ρ(Z)

pθ(YT , Z)

ρ(Z)
dZ,

where the right hand side is simply Lθ(YT ). Therefore, we
may define a lower bound for the likelihood function by

Bρ(θ, θk) ,
∫
ρ(Z) log

pθ(YT , Z)

ρ(Z)
dZ. (5)

Notice that Jensen’s inequality has ‘reunited’ the loga-
rithm with the likelihood, thereby making the bound more
amenable to optimization. Choosing ρ(Z) = pθk(Z|YT )
yields an ‘optimal bound’ in the sense that Bρ(θk, θk) =
Lθk(YT ) and so intuitively, maximizing Bρ(θ, θk) w.r.t θ
will result in Lθ(YT ) > Lθk(YT ).

It is convenient to express the optimal bound in the form

Bρ(θ, θk) = Q(θ, θk) +H(θk),

where Q(θ, θk) represents∫
pθk(Z|YT ) log pθ(YT , Z) dZ = Eθk

[
log pθ(YT , Z)|YT

]
and H(θk) denotes the differential entropy of pθk(Z|YT ).
As H(θk) is independent of θ, maximizing the bound
reduces to maximizing Q(θ, θk).

To summarize, each iteration of the EM algorithm consists
of an expectation (E) step to compute Q(θ, θk), and a
maximization (M) step in which Q(θ, θk) is maximized to
deliver an improved θk+1, such that Lθk+1

(YT ) ≥ Lθk(YT ).

2.3 Latent variables for dynamical systems

In the application of EM to the identification of dynamical
systems, there are two natural candidates for the choice

Algorithm 1 Expectation Maximization algorithm

(1) Set k = 0 and initialize θk such that Lθk(YT ) is finite.
(2) Expectation (E) Step:

Q(θ, θk) = Eθk
[

log pθ(YT , Z)|YT
]

(6)

(3) Maximization (M) Step:

θk+1 = arg max
θ
Q(θ, θk) (7)

(4) If not converged, k ← k + 1 and return to step 2.

of latent variables: systems states, xt, and system distur-
bances, wt. Choosing latent states yields a joint likelihood
function of the form

pθ(YT , XT ) =

[ T∏
t=1

pθ(yt|xt)
][ T−1∏

t=1

pθ(xt+1|xt)
]
pθ(x1).

(8)
whereas latent disturbances leads to

pθ(YT , x1,WT ) =

[ T∏
t=1

pθ(yt|xt)
]
pθ(WT )pθ(x1), (9)

where xt+1 = aθ(xt, ut) + wt for t ∈ [1, T ]. We denote
this state sequence by XT (θ, x1,WT ), which, for given
θ, is a deterministic mapping from initial conditions and
disturbances to system states.

It is widely recognized that formulating the EM algorithm
over latent states can simplify the optimization problem
in (7). In contrast, XT (θ, x1,WT ) renders (9) a highly
nonconvex function of θ, thereby complicating the M step.
Despite this, there are some compelling reasons to believe
that latent disturbances may offer benefits over latent
states, particularly related to the fidelity of the bound
Bρ(θ, θk); see Section 5.

3. CONVEXIFICATION OF EM WITH LATENT
DISTURBANCES

The standard choice of latent states can be interpreted
as a way of simplifying, and in some cases convexifying,
the M step. In this section, we propose an alternative
convexification strategy that enables the EM algorithm to
be formulated over latent disturbances.

3.1 Expectation step

We begin by outlining the consequences of formulating the
EM algorithm over latent disturbances. To perform the E
step, i.e. compute Q(θ, θk) as in (6), it is convenient to use
the following decomposition of (9),

Eθk
[

log pθ(YT , x1,WT )|YT
]︸ ︷︷ ︸

Q(θ,θk)

= Eθk
[

log pθ(x1)|YT
]︸ ︷︷ ︸

Q1(θ,θk)

+

Eθk
[

log pθ(WT )|YT
]︸ ︷︷ ︸

Q2(θ,θk)

+ Eθk
[

log pθ(YT |XT (θ, x1,WT ))|YT
]︸ ︷︷ ︸

Q3(θ,θk)

(10)

and compute each term separately.

Ignoring constant terms, Q1(θ, θk) can be expressed as

−
[

log det Σ1+tr
(
Σ−1

1

(
(x̂1|T−µ)(x̂1|T−µ)′+Σ̂1|T

))]
(11)

where

x̂1|T = Eθk
[
x1|YT

]
, Σ̂1|T = Varθk

[
x1|YT

]
. (12)



Calculating the quantities in (12) amounts to solving a
state smoothing problem. For general nonlinear models,
recent developments in particle smoothing methods, see
e.g. Lindsten and Schön (2013), may be leveraged.

Computation of Q2(θ, θk) can be more challenging, de-
pending on the complexity of the distribution pθ(WT ). We
propose a Monte Carlo approximation: if we can generate
realizations W i

T from the distribution pθk(WT |YT ) then

Q̃2(θ, θk) ,
1

M

M∑
i=1

log pθ(W
i
T ) ≈ Eθk

[
log pθ(WT )|YT

]
,

with equality in the limit M → ∞. To sample from
pθk(WT |YT ), first generate realizations from pθk(XT |YT ),
again using particle smoothing methods. Then W i

T can be
recovered by substituting Xi

T into (1a) and solving for wt.

Finally, we turn our attention to computation of Q3(θ, θk),
and once more employ a Monte Carlo (MC) approximation

Eθk
[

log pθ(YT |XT (θ, x1,WT ))|YT
]

≈ 1

M

M∑
i=1

log pθ(YT |XT (θ, xi1,W
i
T )), (13)

where {xi1,W i
T } are sampled from pθk(x1,WT |YT ). By the

Markov property of (1b), (13) can be expressed as

Q̃3(θ, θk) , −
[

1

M

M∑
i=1

T∑
t=1

|yt−gθ(xit, ut)|2Σ−1
v

+T log det Σv

]
(14)

where xi1:T = XT (θ, xi1,W
i
T ), and constants are ignored.

3.2 Maximization step

To perform the M step, i.e. maximize Q(θ, θk) as in (7),
we will utilize the same decomposition as in (10), and
optimize each of the conditional expectations separately.
This is valid because each term in (10) is a function of
different parameters: µ and Σ1 appear only in Q1(θ, θk);

θw in Q̃2(θ, θk); and θa, θg and Σv in Q̃3(θ, θk).

Maximization of Q1(θ, θk) is straightforward once the
smoothed quantities of (12) have been computed; closed
form expressions for the global optimizer are given in
Section 4.2. Maximization of the Monte Carlo approxima-
tion Q̃2(θ, θk) can be handled by numerical optimization
methods, e.g. gradient descent, initialized at θk.

Finally, we must consider maximization of Q̃3(θ, θk). This
is a challenging problem, as the choice of latent variables
Z = {x1,WT } means that the states XT (θ, x1,WT ) now

change as a function of θ, rendering Q̃3(θ, θk) a nonconvex
function of the model parameters.

We now present the main contribution of this paper: a
convexification of the maximization of Q̃3(θ, θk). To make
the connection to existing work more transparent, we
introduce the ‘weighted simulation error’, defined

E(θ, x1,WT ) ,
T∑
t=1

|yt − gθ(xt, ut)|2Σ−1
v
, (15)

where x1:T = XT (θ, x1,WT ). Applying this definition to

(14), −Q̃3(θ, θk) can now be expressed as

1

M

M∑
i=1

E(θ, xi1,W
i
T ) + T log det Σv (16)

and thus maximization of Q̃3(θ, θk) is equivalent to mini-
mization of (16). To convexify (16), let us first replace the
concave term log det Σv with an affine upper bound

log det Σvk + tr
(
Σ−1
vk

Σv
)
,

which is tight at Σvk , our best guess of the covariance Σv.

Next, suppose there exists a function Ĵλ(θ, x1,WT ), convex
in θ, that upper bounds the simulation error, i.e.

Ĵλ(θ, x1,WT ) ≥ E(θ, x1,WT ) ∀θ ∈ Θ.

where Θ is a convex set. It is then easy to see that

1

M

M∑
i=1

Ĵλi
(θ, xi1,W

i
T ) ≥ 1

M

M∑
i=1

E(θ, xi1,W
i
T ) ∀θ ∈ Θ.

Therefore, provided such a function Ĵλ(θ, x1,WT ) exists,

1

M

M∑
i=1

Ĵλi
(θ, xi1,W

i
T )+T log det Σvk +T tr

(
Σ−1
vk

Σv
)
, (17)

represents a convex upper bound for (16).

3.3 Convex relaxation of simulation error minimization

To realize the upper bound in (17) we draw inspiration
from recent research presented in Megretski (2008); To-
benkin et al. (2010); Manchester et al. (2012), which

provides a candidate for Ĵλ(θ, x1,WT ). To derive this
function, first consider the widely studied problem of min-
imizing simulation error, which may be formalized as

J∗ , min
θ,XT

J(θ,XT ) ,
T∑
t=1

|yt − gθ(xt, ut)|2Σ−1
v

(18a)

s.t. F(θ,XT ,WT ) = 0. (18b)

Here F(θ,XT ,WT ) encodes the dynamic constraints on xt,
such that F(θ,XT (θ, x1,WT ),WT ) = 0.

The key idea is the application of Lagrangian relaxation,
or the S-Procedure; a technique used extensively in robust
control to approximate difficult constrained optimization
problems with ‘easier’ unconstrained problems. In our
context, Lagrangian relaxation takes the form

Ĵλ(θ, x1,WT ) , sup
X2:T

{J(θ,XT )− λ′F(θ,XT ,WT )} (19)

where λ can be interpreted as a Lagrange multiplier.
For arbitrary λ, the function Ĵλ(θ) has the two essential
properties that we require:

1) It is convex in θ. To see this, observe that when a
and g are linearly parametrized, J and F are convex
and affine functions of θ, respectively. Therefore, Ĵλ(θ)
is convex in θ, as it is the supremum of an infinite
family of convex functions; see Section 3.2.3 of Boyd
and Vandenberghe (2004).

2) It is an upper bound for the simulation error. To see
this, observe that if XT = XT (θ, x1,WT ), then

J(θ,XT )− λ′F(θ,XT ,WT ) = E(θ, x1,WT ),

implying that the supremum over XT can be no
smaller.



The original simulation error minimization (18) may then
be approximated by the convex optimization problem

Ĵ∗λ , min
θ

Ĵλ(θ, x1,WT ). (20)

The remaining challenge is to choose the Lagrange multi-
plier λ such that Ĵλ(θ) is a useful upper bound, i.e., such

that Ĵ∗λ ≈ J∗. Unfortunately, the simultaneous search for
λ and θ is not jointly convex, due to the coupling between
λ and F , and so λ must be specified in advance.

4. IDENTIFICATION OF LGSS MODELS

We now apply the strategy proposed in Section 3 to the
special case of linear Gaussian state space (LGSS) models
of the form

xt+1 = Axt +But +Gwt, (21a)

yt = Cxt +Dut + vt, (21b)

where x1 and vt are distributed according to (3), and
wt ∼ N (0,Σw).

4.1 Expectation step

To compute Q1(θ, θk) we require the quantities in (12),
which in the LGSS case may be calculated, e.g., by the
methods of (Durbin and Koopman, 2012, Section 4.4).
To compute Q2(θ, θk), the assumption of independent
disturbances implies that it can be expressed as

−
[
T log det Σw +

T∑
t=1

tr
(
Σ−1
w Eθk

[
wtw

′
t|YT

])]
(22)

where constants are ignored. Again, in the LGSS case,
Eθk
[
wtw

′
t|YT

]
can be computed exactly by standard dis-

turbance smoothers; see, e.g., (Durbin and Koopman,

2012, Section 4.5). Finally, to compute Q̃3(θ, θk), realiza-
tions of pθk(x1,WT |YT ) can be efficiently generated by
mean correction methods, such as those in (Durbin and
Koopman, 2012, Section 4.9).

4.2 Maximization step

To maximize Q1(θ, θk), notice that (11) is concave w.r.t µ
and Σ−1

1 . Therefore, setting the gradient to zero gives the

global maximizers µ = x̂1:T and Σ1 = Σ̂1:T . Maximization
of Q2(θ, θk) can be handled in a similar way. Defining

Σ̂w =
1

T

T∑
t=1

Eθk
[
wtw

′
t|YT

]
(23)

and substituting into (22), Q2(θ, θk) is proportional to

−
[
T log det Σw + T tr

(
Σ−1
w Σ̂w

)]
and thus, by the same arguments used above, the global
maximizer is given by Σw = Σ̂w.

Finally, maximization of Q̃3(θ, θk) is handled by the La-
grangian relaxation proposed in Section 3.2. To apply
this method to LGSS models, first consider an implicit
representation of the dynamics in (21a)

Ext+1 = Fxt +Kut + Lwt, (24)

where the original form can be recovered as A = E−1F ,
B = E−1K and G = E−1L. It is known that equivalent

constraints can give non-equivalent bounds in Lagrangian
relaxation, and so these implicit dynamic constraints im-
prove performance, in general. For these linear dynamics,
the dynamic constraint (18b) becomes

F(θ,XT ,WT ) = F̄ (θ)X2:T + ε(θ, x1,WT ) = 0, (25)

where F̄ ∈ R(T−1)nx×(T−1)nx and ε ∈ R(T−1)nx are given
by

E 0 . . .
−F E 0
0 −F E 0
...

. . .
. . .

 and


−Fx1 −Kũ1 −Gw1

−Kũ2 −Gw2

...
−KũT−1 −GwT−1


respectively.

4.3 Lagrange multipliers

To utilize the convex bound (17) proposed in 3.2, we must
supply suitable Lagrange multipliers, {λi}Mi=1. In passing,
we note that the number of particles, M , used in (14) is a
trade-off between accuracy of the MC approximation, and
size of the optimization problem. In practice, we have had
success with M on the order of tens of particles.

Recall that the key to the EM algorithm is that optimiza-
tion of Q(θ, θk) guarantees improvement of Lθ(YT ), and
hence, we must ensure that optimization of (17) results

in improvement of Q̃3(θ, θk). The simplest way to achieve

this is to find λi such that Ĵλi
(θk, x

i
1,W

i
T ) = E(θk, x

i
1,W

i
T )

for all {xi1,W i
T }Mi=1 appearing in (17).

Fortunately, in the case of the LGSS model (21), such a λ
is readily found, as shown in the following lemma:

Lemma 1. Consider a Lagrange multiplier of the form

λ = X2:T + h = [(x2 + h2)′, . . . , (xT + hT )′]′.

Suppose, for a given θk, we set

h = (F̄ ′)−1
[
ΨX2:T (θk, x1,WT )−C̄ ′Σ̄−1

v (Y2:T −D̄U2:T )−ε
]

(26)
where

Ψ = C̄ ′Σ̄−1
v C̄ − F̄ − F̄ ′, (27)

C̄ = IT−1 ⊗ C, D̄ = IT−1 ⊗D and Σ̄v = IT−1 ⊗ Σv.

Here, In denotes the n × n identity matrix and ⊗ the
Kronecker product. Then, with this choice of λ, we have

Ĵλ(θk, x1,WT ) = E(θk, x1,WT ).

Proof. Due to space restrictions, we merely sketch the
proof. In this case, J(θ,XT )− λ′F(θ,XT ,WT ) becomes

X ′2:TΨX2:T − 2ψ′X2:T + γ (28)

and so the supremum in (19) can be computed analytically,
assuming Ψ < 0. Setting the supremizing X2:T to be
X2:T (θk, x1,WT ) and solving for h yields (26). 2

The proof of Lemma 1 assumed negative definite Ψ; the
following lemma clarifies when this assumption holds:

Lemma 2. Consider the set of models of the form (24)
defined by the constraint

Θ = {θ : F ′PF − E − E′ + P−1 + C ′Σ−1
v C < 0} (29)

for some P = P ′ > 0. This set has the following properties:

1. Ψ is negative definite when constructed from θ ∈ Θ.
2. A model of the form (21) is stable if and only if θ ∈ Θ.



3. {Θ, P} is a convex set.

Proof. Properties 2 and 3 are straightforward extensions
of Lemma 4 and Section 2.1 of Manchester et al. (2012),
respectively. Property 1 can be inferred from (Megretski,
2008, Theorem 2).

Therefore, by restricting our model class to Θ defined in
(29), we ensure stability of the identified model and Ψ < 0.
Algorithm 2 provides a summary of the steps required to
implement the proposed method.

Algorithm 2 LGSS identification via EM

(1) Set k = 0 and initialize θk such that Lθk(YT ) is finite.
(2) Expectation (E) Step:

(2.1) Compute x̂1|T and Σ̂1|T in (12).

(2.2) Compute Σ̂w in (23).
(2.3) Generate M realizations from pθk(x1,WT |YT ).

(3) Maximization (M) Step:

(3.1) Set µ = x̂1|T , Σ1 = Σ̂1|T and Σw = Σ̂w.

(3.2) Compute {λi}Mi=1 from {xi1,W i
T }Mi=1 using (26).

(3.3) Update θa, θg and Σv by solving (20), with
{θa, θg,Σv} ∈ Θ defined by (29).

(4) If not converged, k ← k + 1 and return to step 2.

5. ON THE MERITS OF LATENT DISTURBANCES

5.1 Fidelity of bound on the likelihood function

The premise of the EM algorithm is the optimization of a
tractable lower bound Bρ(θ, θk) in lieu of Lθ(YT ). In prac-
tice, there is a trade-off between the fidelity of Bρ(θ, θk)
and ease of optimization; e.g. a high fidelity bound is of
little value if it is riddled with local maxima. Nonethe-
less, suppose one was given a method of optimizing any
Bρ(θ, θk). Then, one may wonder: which choice of latent
variables produces the bound that represents Lθ(YT ) most
faithfully?

Recall from Section 2.2, that the quality of the bound
depends on the arbitrary distribution ρ(Z), with ρ =
pθk(Z, |YT ) optimal in the sense that then Bρ(θk, θk) =
Lθk(YT ). It thus follows that when the sensitivity of
pθk(Z|YT ) to θk is low, Bρ(θ, θk) bounds Lθ(YT ) more
tightly. In fact, if the Kullback-Leibler (KL) divergence of
pθk(Z|YT ) from pθ(Z|YT ), which we denote DKL(θk, θ, Z),
is used to approximate this sensitivity, it gives the exact
error between Bρ(θ, θk) and Lθ(YT ) at θ.

The question now becomes: is pθ(X|YT ) or pθ(x1,WT |YT )
least sensitive to θ? To gain some insight into this question
we have plotted DKL(θk, θ,XT ) and DKL(θk, θ, {x1,WT })
for a generic second order LGSS model; see Fig. 1. Such a
model is parametrized by θ = {ζ, ωn} where ζ denotes the
damping ratio and ωn the natural frequency. Refer to the
figure caption for experimental details.

Fig. 1 clearly depicts DKL(θk, θ, {x1,WT }) uniformly un-
der bounding DKL(θk, θ,XT ). While this result is by no
means conclusive, it lends some support to the intuitive
hypothesis that pθ(x1,WT |YT ) may be less sensitive than
pθ(X|YT ) to θ. A deeper understanding of this relationship
is deserving of further study.
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Fig. 1. DKL(θk, θ,XT ) and DKL(θk, θ, {x1,WT }) for a

LGSS model, with true θ̂ = {0.3, 10}, θk = {0.3, 4}
and θ = {0.3, ωn}. The covariance of disturbances and
measurement noise, both Gaussian, is equal to 0.1.
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5.2 Effect of disturbances on bound degeneration

It has been observed, see e.g. Schön et al. (2011), that the
bound Bρ(θ, θk) built with latent states, begins to degen-
erate when the magnitude of the disturbances are small.
In fact, when wt ≡ 0, pθ(xt+1|xt) becomes deterministic,
and so pθk(XT |YT ) reduces to a δ function; thus the bound
collapses to a single point at θ = θk.

Conversely, as was shown in Section 2.3, when we for-
mulate the EM algorithm over latent disturbances, the
problematic pθ(xt+1|xt) is eliminated, and so the bound
remains well behaved. In fact, for given x1 and wt ≡ 0,
Bρ(θ, θk) = Lθ(YT ), and thus the bound exactly repro-
duces the likelihood function.

This cursory analysis suggests that in regions of the pa-
rameter space where the magnitude of disturbances is
small, at least relative to the measurement noise, higher
fidelity bounds may be obtained by choosing latent dis-
turbances instead of latent states. We illustrate this prin-
ciple for a simple first order LGSS model in Fig. 2. The
disturbances are an order of magnitude smaller than the
measurement noise, and so as expected, the bound formed
with latent disturbances represents Lθ(YT ) most faithfully.



5.3 Circumventing problematic transition densities

To formulate the EM algorithm over latent states, one
must construct the joint likelihood function (8) from the
transition density pθ(xt+1|xt). Unfortunately, for many
models of interest pθ(xt+1|xt) may not have a closed form.
A simple example of this is a LGSS model with rank
deficient disturbances, however more interesting instances
arise, e.g., when modeling diffusion processes. In such
cases, EM based on latent states breaks down, although
some solutions to this problem have been proposed for
linear models; see e.g. Solo (2003).

In contrast, by formulating the EM algorithm over latent
disturbances, we obtain the joint likelihood function of
(9). Comparing (9) to (8), notice that the problematic
transition density has been replaced with the disturbance
distribution, pθ(WT ). Therefore, by reformulating over
latent disturbances, one may elegantly extend the class
of models that can be identified via EM, to include those
that lack closed form expressions for the transition density.

5.4 Preliminary numerical experiments

Finally, we demonstrate the performance of Algorithm 2
by a comparison with the latent states based algorithm
in Gibson and Ninness (2005). Specifically, we apply each
algorithm to the identification of 500 different first order
LGSS models, randomly generated by Matlab’s drss func-
tion. Further details are found in the caption of Fig. 3.

To quantify the predictive power of the identified models
we use the normalized simulation error, defined

Ẽ(θ) ,

∑T
t=1 |yt − g(xt, ut)|2∑T

t=1 y
′
tyt

, x1:T = XT (θ, µ, 0)

where {ut, yt}Tt=1 represents validation data.

Of course, no general conclusions can be drawn from
such a study, especially given the simplicity of the model
structure. Nonetheless, on average Algorithm 2 performed
marginally better, achieving lower Ẽ(θ) in 57% of the trials.
More interestingly, the dense column of scores concen-
trated along the vertical axis of Fig. 3, comprising approx.
18% of the data points, indicates that there were a num-
ber of trials in which Algorithm 2 performed significantly
better than the latent states based alternative.

6. CONCLUSION

In this paper, we have proposed a system identification
strategy based on a formulation of the EM algorithm
over latent system disturbances, rather than latent sys-
tem states. The main contribution is the application of a
Lagrangian relaxation that enables the challenging ‘maxi-
mization step’ to be formulated as a convex optimization
problem. Such a formulation was shown to alleviate dif-
ficulties related to the identification of models with in-
tractable transition densities, and, in some circumstances,
to improve the fidelity of the bound on the likelihood. The
proposed strategy was fully developed for identification
of LGSS models, and preliminary results from numerical
experiments suggest that it could represent a competitive
alternative to existing EM based identification methods.
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Fig. 3. Comparison of normalized simulation error. The
true disturbance and measurement noise covariance
was set to Σw = 10−4 and Σv = 0.2. Initial guesses,
θ0, were generated by Matlab’s drss. T = 50 obser-
vations were used for identification.

Specialized algorithms for minimization of the Lagrangian
relaxation are the subject of current research; preliminary
results indicate a dramatic reduction in computation time
compared to general purpose SDP solvers, thereby en-
abling efficient identification of higher order systems.
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