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aSchool of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Australia
(e-mail: {j.umenberger, i.manchester}@acfr.usyd.edu.au).

bDepartment of Information Technology, Uppsala University, Sweden, (e-mail: {johan.wagberg, thomas.schon}@it.uu.se}).

Abstract

This paper concerns maximum likelihood identification of linear time invariant state space models, subject to model
stability constraints. We combine Expectation Maximization (EM) and Lagrangian relaxation to build tight bounds
on the likelihood that can be optimized over a convex parametrization of all stable linear models using semidefinite
programming. In particular, we propose two new algorithms: EM with latent States & Lagrangian relaxation (EMSL),
and EM with latent Disturbances & Lagrangian relaxation (EMDL). We show that EMSL provides tighter bounds on the
likelihood when the effect of disturbances is more significant than the effect of measurement noise, and EMDL provides
tighter bounds when the situation is reversed. We also show that EMDL gives the most broadly applicable formulation
of EM for identification of models with singular disturbance covariance. The two new algorithms are validated with
extensive numerical simulations.
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1. Introduction

Linear time invariant (LTI) state space models pro-
vide a useful approximation of dynamical system behavior
in a multitude of applications. In situations where mod-
els cannot be derived from first principles, some form of
data-driven modeling, i.e. system identification, is appro-
priate [14]. This paper is concerned with identification of
discrete-time linear Gaussian state space (LGSS) models,

xt+1 = Axt +But + wt, (1a)

yt = Cxt +Dut + vt, (1b)

where xt ∈ Rnx denotes the system state, and ut ∈ Rnu ,
yt ∈ Rny denote the observed input and output, respec-
tively (henceforth, resp.). The disturbances, wt ∈ Rnw and
measurement noise, vt, are modeled as zero mean Gaussian
white noise processes, while the uncertainty in the initial
condition x1 is modeled by a Gaussian distribution, i.e.

wt ∼ N (0,Σw), vt ∼ N (0,Σv), x1 ∼ N (µ,Σ1). (2)

For convenience, all unknown model parameters are de-
noted by the variable θ = {µ,Σ1,Σw,Σv, A,B,C,D}.

In this work, we seek the maximum likelihood (ML)
estimate of the model parameters θ, given measurements
u1:T and y1:T , subject to model stability constraints, i.e.

θ̂ML = arg max
θ
pθ(u1:T , y1:T ) s.t. A ∈ S. (3)

ML methods have been studied extensively and enjoy de-
sirable properties, such as asymptotic efficiency; see, e.g.,
[14, Chapters 7 and 9].

Identification of LTI systems is complicated by (at least)
two factors: latent variables and model stability, the latter
being an essential property in many applications. Typi-
cally, observed data consists of inputs and (noisy) outputs
only; the internal states and/or exogenous disturbances
are latent or ‘hidden’. Bilinearity of (1) in x and θ means
that the joint set of feasible states and parameters is non-
convex. Additionally, even if x is known, the set of Schur
stable matrices, which we denote S, is also nonconvex.

Various strategies have been developed to deal with the
problem of latent variables. Marginalization, for instance,
involves integrating out (i.e. marginalizing over) the latent
variables, leaving θ as the only quantity to be estimated.
This approach is adopted by prediction error methods [14,
15] (PEM) and the Metropolis-Hastings algorithm [19, 8].

Alternatively, one may treat the latent variables as ad-
ditional quantities to be estimated together with the model
parameters. Such a strategy is termed data augmentation,
and examples include subspace methods [35, 12], and the
Expectation Maximization (EM) algorithm [3, 25, 7, 26].
The augmentation together with appropriate priors also al-
lows for closed form expressions in a Gibbs sampler [6, 36],
(as a special case of the Metropolis-Hastings algorithm).

Recently, a new family of methods have been developed
in which one supremizes over the latent variables, with an
appropriate multiplier, to obtain convex upper bounds for
quality-of-fit cost functions, such as output error [18, 30].
An important technique employed in this approach is a
type of Lagrangian relaxation, similar to a method widely
applied in combinatorial optimization [13] and robust con-
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trol, where it is referred to as the S-procedure [38, 22].
The problem of model stability has also seen consider-

able attention over the years. In subspace identification,
a number of strategies have been proposed: [16] showed
that stability can be guaranteed by augmenting the ex-
tended observability matrix with rows of zeros; in [34],
regularization was used to constrain the spectral radius of
the identified A to a user-specified value; [10] constrained
the largest singular value of A to be less than unity, us-
ing a linear matrix inequality (LMI), yielding sufficient
albeit conservative conditions for stability; the follow-up
work of [11] introduced an LMI parametrization of all sta-
ble models, S; this approach was generalized in [20] to
constrain the eigenvalues of A to arbitrary convex regions
of the complex plane. However, these subspace methods
do not fall within, nor inherit the desirable properties of,
the ML framework; e.g. [16] is known to bias the esti-
mated model, and even unconstrained subspace methods
are generally considered to be less accurate than PEM [5].
Furthermore, [11] replaces the least-squares objective with
a weighted projection which, as noted in [27] can produce
substantial distortions.

As a middle ground between the conservatism of [10]
and the distortions of [11], the authors of [27] proposed a
constraint generation approach; c.f. also [1]. The method
takes as its starting point an unconstrained least squares
problem, such as those arising in subspace identification
or EM with latent states, and then iteratively introduces
linear constraints until a stable model is identified. This
leaves the desired cost function undistorted; however, the
resulting polytopic approximation of S excludes many sta-
ble systems from consideration.

In output-error (a.k.a. simulation-error) identification,
which can be interpreted as a special case of ML with no
disturbances, convex optimization approaches have been
developed based on LMI parameterizations of all stable
models and convex bounds on output error, including the
Lagrangian relaxation mentioned above [31, 30, 32]. How-
ever, due to the approximation of output error these “one-
shot” convex optimization methods will generally be bi-
ased and will not produce true ML estimates.

In contrast to the above approaches, in this paper we
maximize the true likelihood over a complete convex pa-
rameterization of all stable models. We do so by leveraging
the underlying similarities between EM and Lagrangian
relaxation to incorporate model stability constraints into
the ML framework. The EM algorithm is an iterative ap-
proach to ML estimation, in which estimates of the latent
variables are used to construct tractable lower bounds to
the likelihood. We use Lagrangian relaxation to derive al-
ternative bounds on the likelihood, that have advantage of
being able to be optimized over a convex parameterization
of all stable linear models, using standard techniques such
as semidefinite programming (SDP).

In this paper, we treat both the latent states and la-
tent disturbances formulation of EM, leading to two algo-
rithms: EM with latent States & Lagrangian relaxation

(EMSL), and EM with latent Disturbances & Lagrangian
relaxation (EMDL). The former represents the de facto
choice of latent variables; however, we show that the latter
can lead to higher fidelity bounds on the likelihood, when
the effect of measurement noise is more significant than
that of the disturbances. We also show that latent distur-
bances lead to the most broadly applicable formulation of
EM for identification of singular state space models.

We first introduced the basic idea of combining La-
grangian relaxation with a formulation of EM over latent
disturbances in our conference paper [33]. This paper ex-
tends that work in several significant ways. Foremost, we
now incorporate model stability constraints into the more
common latent states formulation, c.f. §4.1, as well as the
latent disturbances case, c.f. §4.2. We also extend the
proposed method to handle correlated disturbances and
measurement noise, c.f. §4.3. In §4.2 we apply Lagrangian
relaxation without resorting to Monte Carlo approxima-
tions, unlike [33]. Furthermore, the Lagrangian relaxation
detailed in this paper makes use of a more effective multi-
plier, which improves fidelity of the bound. Finally, a new
study of the behavior of the EM algorithm for large and
small disturbances is presented in §5.2 and §5.3, offering
insights to guide the practitioner as to the best choice of
latent variables for a given problem.

2. Preliminaries

2.1. Notation

The cone of real, symmetric nonnegative (positive) def-
inite matrices is denoted by Sn+ (Sn++). The n×n identity
matrix is denoted In. Let vec : Rm×n 7→ Rmn denote the
function that stacks the columns of a matrix to produce
a column vector. The Kronecker product is denoted ⊗.
The transpose of a matrix A is denoted A′. For a vector
a, |a|2Q is shorthand for a′Qa. Time series data {xt}bt=a
is denoted xa:b where a, b ∈ N. A random variable x dis-
tributed according to the multivariate normal distribution,
with mean µ and covariance Σ, is denoted x ∼ N (µ,Σ).
We use a(θ) ∝ b(θ) to mean b(θ) = c1a(θ)+c2 where c1, c2
are constants that do not affect the minimizing value of θ
when optimizing a(θ). The log likelihood function is de-
noted Lθ(y1:T ) , log pθ(u1:T , y1:T ). The spectral radius
(magnitude of largest eigenvalue) of a matrix A is rsp(A).

2.2. The minorization-maximization principle

The minorization-maximization (MM) principle [21, 9]
is an iterative approach to optimization problems of the
form maxθ f(θ). Given an objective function f(θ) (not
necessarily a likelihood), at each iteration of an MM algo-
rithm we first build a tight lower bound b(θ, θk) satisfying

f(θ) ≥ b(θ, θk) ∀ θ and f(θk) = b(θk, θk),

i.e. we minorize f by b. Then we optimize b(θ, θk) w.r.t.
θ to obtain θk+1 such that f(θk+1) ≥ f(θk). The princi-
ple is useful when direct optimization of f is challenging,
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but optimization of b is tractable (e.g. concave). In the
following two subsections, we present EM and Lagrangian
relaxation as special cases of the MM principle, for prob-
lems involving missing data. Each of these algorithms is
predicated on the assumption that there exists latent vari-
ables, z, such that optimization of f(θ) would be more
straightforward if z were known.

2.3. The Expectation Maximization algorithm

The EM algorithm [3] applies the MM principle to ML
estimation, i.e., f(θ) = log pθ(u1:T , y1:T ) , Lθ(y1:T ). Each
iteration of the algorithm consists of two steps: the expec-
tation (E) step computes the auxiliary function

Q(θ, θk) ,
∫
Lθ(y1:T , Z)pθk(Z|y1:T ) dZ (4a)

= Eθk
[
Lθ(y1:T , Z)|y1:T

]
, (4b)

which is then maximized in lieu of the likelihood function
during the maximization (M) step. The auxiliary function
can be shown to satisfy the following inequality

Lθ(y1:T )− Lθk(y1:T ) ≥ Q(θ, θk)−Q(θk, θk) (5)

and so the new parameter estimate θk+1 obtained by maxi-
mization of Q(θ, θk) is guaranteed to be of equal or greater
likelihood than θk. In this sense, EM may be thought of
as a specific MM recipe for building lower bounds Q(θ, θk)
to the objective Lθ(y1:T ), in ML estimation problems in-
volving latent variables.

Remark 1. Strictly speaking Q(θ, θk) does not minorize
Lθ(y1:T ). Rather, the change in Q(θ, θk) lower bounds
the change in Lθ(y1:T ); c.f. (5). Nevertheless, with some
abuse of terminology, we will refer to Q(θ, θk) as a lower
bound, as shorthand for the relationship in (5).

2.4. Lagrangian relaxation

The method of Lagrangian relaxation proposed in [30]
constructs convex upper bounds for constrained minimiza-
tion problems of the form

min
θ,z

J(θ, z) s.t. F (θ, z) = 0, (6)

i.e. f(θ) = minz J(θ, z) s.t. F (θ, z) = 0. Here J(θ, z)
is a cost function assumed to be convex in θ for each z,
and F (θ, z), assumed affine in θ, encodes the constraints
between z and θ, e.g. (1a), (1b).

Unlike EM, in which we estimate z, Lagrangian relax-
ation supremizes over the latent variables to generate the
bound. Specifically, the relaxation of (6) takes the form

J̄λ(θ) = sup
z

J(θ, z)− λ(z)′F (θ, z), (7)

where λ(z) may be interpreted as a Lagrange multiplier.
For arbitrary λ, the function J̄λ(θ) has two key properties:

1) It is convex in θ. Recall that J and F are convex and
affine in θ, respectively. As such, J̄λ(θ) is the supre-
mum of an infinite family of convex functions, and is
therefore convex in θ; see §3.2.3 of [2].

2) It is an upper bound for the original problem (6). Given
θ, let z∗ be any z such that F (θ, z∗) = 0. Then

J(θ, z∗) + λF (θ, z∗) = J(θ, z∗) ≥ f(θ),

which implies that the supremum over all z can be no
smaller; i.e. J̄λ(θ) is an upper bound for f(θ).

The original optimization problem (6) may then be ap-
proximated by the convex program minθ J̄λ(θ).

In this paper, we will show how to construct λ(z) so
that the convex bound is tight at a point θk, thus allowing
us to use Lagrangian relaxation in the MM framework.

3. EM for linear dynamical systems

In the application of EM to the identification of dy-
namical systems, there are two natural choices of latent
variables: systems states, x1:T , and initial conditions and
disturbances {x1, w1:T }. In this section, we recap the la-
tent states case, detail the latent disturbances formulation,
and elucidate the key differences between the two.

3.1. EM with latent states

Latent states are the de facto choice of latent variables
in the identification of dynamical systems. Consequently,
this formulation has been studied extensively, c.f. [7]. Here
we recap the essential details, to pave the way for the in-
troduction of stability guarantees in §4.1. Choosing latent
states yields a joint likelihood function of the form

pθ(y1:T , x1:T ) =

[ T∏
t=1

pθ(yt|xt)
][ T−1∏

t=1

pθ(xt+1|xt)
]
pθ(x1).

(8)
The E step computes the auxiliary function,

Qs(θ, θk) = Eθk [ log pθ(y1:T , x1:T )| y1:T ] (9)

which decomposes as

Qs(θ, θk) = Eθk [ log pθ(x1)| y1:T ]︸ ︷︷ ︸
∝−Qs

1(θ,θk)

+ (10)

T∑
t=1

Eθk [ log pθ(yt|xt)| y1:T ]︸ ︷︷ ︸
∝−Qs

2(θ,θk)

+

T∑
t=1

Eθk [ log pθ(xt+1|xt)| y1:T ]︸ ︷︷ ︸
∝−Qs

3(θ,θk)

Notice that −Qs ∝ Qs
1 + Qs

2 + Qs
3. It is more convenient

to discuss maximization of Qs in terms of minimization of
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∑3
i=1Q

s
i . As −Qs is convex in θ, minimization is straight-

forward and reduces to linear least squares; c.f [7, Lemma
3.3]. Global minimizers of Qs

1, Qs
2 and Qs

3 are given by

µ = x̂1|T , Σ1 = Σ̂1|T , (11a)

[C D] = ΦyzΦ
−1
zz , Σv = Φyy − ΦyzΦ

−1
zz Φyz, (11b)

[A B] = ΦxzΦ
−1
zz , Σw = Φxx − ΦxzΦ

−1
zz Φxz, (11c)

resp., where zt = [x′t, u
′
t]
′
, Φyy = 1

T

∑T
t=1 yty

′
t, and

x̂1|T = Eθk [x1| y1:T ] , Σ̂1|T = Varθk
[
x1|y1:T

]
, (12)

Φyz =
1

T

T∑
t=1

Eθk [ytz
′
t| y1:T ] , Φxz =

1

T

T∑
t=1

Eθk [xt+1z
′
t| y1:T ]

Φzz =
1

T

T∑
t=1

Eθk [ztz
′
t| y1:T ] , Φxx =

1

T

T+1∑
t=2

Eθk [xtx
′
t| y1:T ] .

The quantities in (12) can be computed by the RTS smoother
[23]; c.f. [7, Lemma 3.2] for details. A numerically robust
square-root implementation of the smoothing algorithm
should be used for accuracy, e.g. [7, §4].

3.2. EM with latent disturbances

In the latent disturbances formulation of EM, it is con-
venient to work with the more general parametrization

xt+1 = Axt +But +Gwt, (13)

of LGSS model dynamics. This permits identification of
singular state-space models, in which nw < nx, as dis-
cussed in §5.1. When using latent disturbances, we set
Σw = I and θ = {µ,Σ1,Σv, A,B,C,D,G}. To avoid cum-
bersome notation, we use the same variable θ to group
parameters in both the latent states and disturbances for-
mulations; the contents of θ can be easily inferred from
the context. Choosing latent disturbances yields a joint
likelihood function of the form

pθ(y1:T , x1, w1:T ) =

[ T∏
t=1

pθ(yt|w1:t−1, x1)

]
pθ(w1:T )pθ(x1).

(14)
Analogously to (10), the auxiliary function

Qd(θ, θk) = Eθk [log pθ(y1:T , x1, w1:T )|y1:T ] (15)

conveniently decomposes as

Qd(θ, θk) = Eθk [log pθ(x1)|y1:T ]︸ ︷︷ ︸
∝−Qd

1(θ,θk)

+ Eθk [log pθ(w1:T )|y1:T ]︸ ︷︷ ︸
∝−Qd

2(θk)

+ Eθk [log pθ(y1:T |x1, w1:T )|y1:T ]︸ ︷︷ ︸
∝−Qd

3(θ,θk)

. (16)

The following lemma details the computation of Qd(θ, θk).
For clarity of exposition, we introduce the following lifted
form of the dynamics in (13),

Y = C̄H̄Z + (C̄N̄ + D̄)U + V,

where Y = vec(y1:T ), U = vec(u1:T ), V = vec(v1:T ), Z =
vec([x1, w1:T−1]),

H̄ =


I 0 0 0 . . . 0
A G 0 0 . . . 0
A2 A G 0 . . . 0
...

. . .
...

AT−1 AT−2G AT−3G . . . G

 ,

N̄ =


0 0 0 0 . . . 0
B 0 0 0 . . . 0
AB B 0 0 . . . 0

...
. . .

...
AT−2B AT−3B . . . AB B 0

 ,
C̄ = IT ⊗ C and D̄ = IT ⊗D. (17)

Lemma 1. The auxiliary function Qd(θ, θk) defined in
(15) is given by

−Qd(θ, θk) ∝ log det Σ1 + |x̂1|T − µ|2Σ−1
1

+ tr
(
Σ−1

1 Σ̂1|T
)
+

T log det Σv + tr(Σ−1
Y (C̄H̄ΩH̄ ′C̄ ′ + ∆̂∆̂′)),

where x̂1|T = Eθk [x1|y1:T ] and Σ̂1|T = Varθk
[
x1|y1:T

]
as

in (12), and
Ẑ = Eθk [Z|y1:T ] , (18a)

Ω = Varθk [Z|y1:T ] , (18b)

µY , Eθ
[
Y |Z

]
= C̄H̄Z + (C̄N̄ + D̄)U, (19a)

ΣY , Varθ
[
Y |Z

]
= IT ⊗ Σv, (19b)

∆̂ = Eθk
[
Y − µY |y1:T

]
= Y − C̄H̄Ẑ − (C̄N̄ + D̄)U. (20)

Proof. Refer to Appendix A.1.

For the LGSS models considered in this work, Ẑ and Ω
can be computed in closed form by standard disturbance
smoothers; see, e.g., [4, §4.5]. Once again, it is prudent
to use square-root implementations of these smoothing al-
gorithms, given in [4, §6.3], for numerical robustness (i.e.
nonnegative definiteness of covariances).

We now turn our attention to the M step, i.e. min-
imization of −Qd ∝ Qd

1 + Qd
2 + Qd

3 . It is clear that Qd
1

and Qs
1 take the same form, so µ = x̂1|T and Σ1 = Σ̂1|T

globally minimize Qd
1(θ, θk), as in (11a). Minimization of

Qd
2(θk) is unnecessary, as it is constant w.r.t. θ. Mini-

mization of Qd
3 , however, is a more challenging problem.

Indeed, from Lemma 1, it is clear that the quantities H̄
and N̄ render Qd

3(θ, θk) a nonconvex function of the model
parameters.

To summarize, the computations involved in each it-
eration of the latent disturbances formulation of EM are
straightforward, with the exception of minimization of
Qd

3(θ, θk), which is nonconvex.
A common heuristic for terminating the EM algorithm

is to cease iterations once the change in likelihood falls
below a certain tolerance δ, i.e.

Lθk+1
(y1:T )− Lθk(y1:T ) < δ. (21)
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Alternatively, one can simply run the algorithm for a finite
number of iterations, chosen so as to attain a model of
sufficient quality; this is the approach taken, e.g., in [7, 37].

4. Convex M step with guaranteed model stability

In this section we incorporate model stability constraints
into the EM framework. The set S of stable A matrices
is nonconvex; however, by using Lagrangian relaxation we
build convex bounds on −Q(θ, θk), which we optimize over
a convex parametrization of all stable linear models.

4.1. Ensuring stability with latent states

We begin with the latent states formulation. The global
minimizers (11a) and (11b) of Qs

1 and Qs
2, resp., remain

unchanged, as they do not influence stability. To optimize
Qs

3, it is convenient to work with the representation:

Qs
3(θ, θk) =

Ms∑
t=1

|x̃t+1−Ax̃t−Bũt|2Σ−1
w

+T log det Σw (22)

where M s = 2nx + nu, and x̃ and ũ satisfy

Ms∑
t=1

 x̃t+1

x̃t
ũt

 x̃t+1

x̃t
ũt

′ = T

[
Φxx Φ′xz
Φxz Φzz

]
= Φs. (23)

Our goal is to minimize Qs
3 subject to model stability con-

straints. The main challenge is nonconvexity of the set
S of (Schur) stable matrices, i.e., the Lyapunov condition
A′PA−P < 0 is not jointly convex in A and P ∈ Snx

++. One
can circumvent this difficulty by introducing an equivalent
implicit representation of the dynamics, e.g.,

Ext+1 = Fxt +Kut. (24)

In what follows, let θs = {E,F,K,Σw}.

Lemma 2. A matrix A ∈ Rnx×nx is Schur stable iff there
exists E ∈ Rnx×nx and P ∈ Snx

++ such that the LMI

Ss(θs) ,

[
E + E′ − P − I F ′

F P

]
≥ 0 (25)

holds with F = EA.

Proof. This result is a trivial modification of Lemma 4
and Corollary 5 in [17, Section 3.2].

By Lemma 2, Θs = {θs : ∃P ∈ Snx
++, S

s(θs) ≥ 0} defines a
convex parametrization of all stable linear systems. Note
also that (25) implies E + E′ > 0, which ensures that the
implicit dynamics in (24) are well-posed, i.e. A = E−1F .

The challenge now becomes the optimization of Qs
3

with models in the implicit form (24). Simply solving

min
θs∈Θs

∑Ms

t=1
|Ex̃t+1 − Fx̃t −Kũt|2Σ−1

w
+ T log det Σw

is insufficient, as there is no guarantee that this will reduce
Qs

3. We proceed by using Lagrangian relaxation to build
a convex upper bound on Qs

3. For clarity of exposition, let
us temporarily ignore the log det Σw term, as well as the
summation, in (22) and consider the nonconvex problem

min
A,B,Σw

|x̃t+1 −Ax̃t −Bũt|2Σ−1
w

s.t. A ∈ S (26)

for some t. Problem (26) is completely equivalent to

min
xt+1,θs∈Θs

|x̃t+1−xt+1|2Σ−1
w

s.t. Ext+1 = Fx̃t+Kũt (27)

as both (26) and (27) have the same objective and feasible
set. Introducing ∆ = x̃t+1−xt+1 and εt = Ex̃t+1−Fx̃t−
Kũt, the Lagrangian relaxation of (27) is given by

J̄sλ(θs, t) = sup
∆
|∆|2

Σ−1
w
− λ(∆)′ (E∆− εt) (28)

for some multiplier λ(∆), c.f. Section 2.4. As J̄sλ(θs, t)
upper bounds (26), we can construct a convex upper bound
for Qs

3 by combining
∑
t J̄

s
λ(θs, t) with a linear bound on

the concave log det Σw term.1

Lemma 3. Consider the function

Q̄s
3(θs) ,

∑Ms

t=1
J̄sλ(θs, t) + T tr

(
Σ−1
wk

Σw
)
, (29)

where Σwk
is the estimate of Σw stored in θk. Q̄s

3(θs) is a
convex upper bound on Qs

3(θ, θk).

The function Q̄s
3 is a convex upper bound on Qs

3 for any
multiplier, λ. However, to be suitable for EM, i.e. for (5)
to hold, we require Q̄s

3 to be tight at θk, i.e. Q̄s
3(θsk) =

Qs
3(θk, θk). The following lemma provides a choice of mul-

tiplier that ensures this property.

Lemma 4. For each J̄sλ(θsk, t) in (29), t = 1, . . . ,M s, let
λ(∆) = 2H∆ where H = (P ′)−1Σ−1

w is such that θsk =
{P, PAk, PBk,Σwk

} ∈ Θs. Then Q̄s
3(θsk) = Qs

3(θk, θk),
i.e. the bound is tight at θk.

Proof. Refer to Appendix B.1.

Before leaving the latent states case we note that the upper
bound Q̄s

3 can be optimized as the following SDP:

min
R,θs∈Θs

tr (RΦs) + T tr
(
Σ−1
wk

Σw
)

(30)

s.t.

 R EF
′

K H 0
H ′EFK H ′E + E′H I

0 I Σw

 ≥ 0,

where R ∈ S2nx+nu is a slack variable, EFK = [E,−F,−K],
and Φs is the empirical covariance matrix in (23). A com-
plete summary of the approach is given in Algorithm 1.

1The linear bound on log det Σw is tr
(

Σ−1
wk

Σw
)

+ log det Σwk +

nx, but we exclude the constant terms from (29) for brevity.
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Remark 2. To ensure model stability, it is only neces-
sary to solve (30) if the spectral radius of Als is too large,
where Als is the least squares solution from (11c), i.e., if
rsp(Als) > 1− δ for some-user selected δ > 0, c.f. (3.2) of
Algorithm 1.

Algorithm 1 EM with latent States and Lagrangian
relaxation (EMSL)

1. Set k = 0 and initialize θk such that Ak ∈ S and
Lθk(y1:T ) is finite; c.f. §3.

2. Expectation (E) Step: compute (12).

3. Maximization (M) Step:

(3.1) Update θk+1 with least squares, as in (11).

(3.2) If rsp(Ak+1) > 1−δ for user-chosen δ > 0, solve
θsk+1 = arg minθs∈Θs Q̄s

3(θs), and update θk+1

with Ak+1 = E−1
k+1Fk+1, Bk+1 = E−1

k+1Kk+1,
and Σwk+1

4. Evaluate termination criteria, e.g. (21). If false,
k ← k + 1 and return to step 2.

4.2. Convex bounds with stability guarantees for latent
disturbances

We now turn our attention to the latent disturbances
formulation. The developments in this section follow the
same pattern as §4.1, however, the computations are more
involved. As in the latent states case, the global minimizer
(11a) of Qd

1 remains unchanged, and so we concentrate on
optimization of Qd

3 subject to a model stability constraint,
A ∈ S. It is convenient to conceptualize Qd

3(θ, θk) in terms
of simulation error, defined as

E(θ, U, Y, Z) ,
T∑
t=1

|yt − Cxt −Dut|2Σ−1
v
, (31)

where vec(x1:T ) = N̄U + H̄Z, i.e., the simulated states.

Lemma 5. With simulation error defined as in (31),
Qd

3(θ, θk) in (16) is equivalent to:

Qd
3(θ, θk) = E(θ, U, Y, Ẑ) +

Md∑
j=1

E(θ, 0, 0, Zj) + T log det Σv

(32)

where Md = nx + (T − 1)nw, and Zj ∈ Rnx+(T−1)nw are

such that
∑Md

j=1 ZZ
j′ = Ω.

Proof. Refer to Appendix B.2.

Our task minθ Q
d
3 s.t. A ∈ S is challenging due to non-

convexity of both the objective and feasible set. As in
§4.1, we circumvent the latter by introducing an implicit
representation of the dynamics in (13),

Ext+1 = Fxt +Kut + Lwt. (33)

Setting θd = {E,F,K,L,Σv} we can define the convex set
of stable models Θd = {θd : ∃P ∈ Snx

++, S
d(θd) ≥ 0}, with

Sd(θs) ,

 E + E′ − P − δI F ′ C ′

F P 0
C 0 Σw

 ≥ 0, (34)

for δ > 0. We use the LMI (34), instead of (25), to ensure
finiteness of the supremum in (37), c.f. Appendix B.4.

To optimize Qd
3 with models in the implicit form (33),

we use Lagrangian relaxation to build a convex upper
bound on Qd

3 . For clarity of exposition, let us temporarily
ignore the log det Σv term, and summation, in (32) and
concentrate on minimization of simulation error

min
θ
E(θ, U, Y, Z) s.t. A ∈ S. (35)

Problem (35) is completely equivalent to

min
∆,θd∈Θd

|Y − C̄∆− D̄U |2
Σ−1

Y

s.t. Ē∆ = ε̄, (36)

as both problems have the same objective and feasible set.
In (36), ∆ ∈ RTnx denotes the states x1:T that we optimize
over, Ē ∈ RTnx×Tnx and ε̄ ∈ RTnx are given by

E 0 . . .
−F E 0
0 −F E 0
...

. . .
. . .

 &


Ex1

Ku1 + Lw1

...
KuT−1 + LwT−1


resp., and C̄, D̄, ΣY are defined in (17). The Lagrangian
relaxation of (36) is given by

J̄dλ(θd, U, Y, Z) = sup
∆
|Y −C̄∆−D̄U |2

Σ−1
Y

−λ(∆)′
(
Ē∆− ε̄

)
(37)

for some multiplier λ(∆) ∈ RTnx , c.f. §2.4. As J̄dλ upper
bounds (26), we can construct a convex upper bound for
Qd

3 by replacing each simulation error term in (32) with
the appropriate bound:

Lemma 6. Consider the following function

Q̄d
3(θd) , J̄λ0(θd, U, Y, Ẑ) +

Md∑
j=1

J̄λj (θd, 0, 0, Zj)

+T tr
(
Σ−1
vk

Σv
)
, (38)

where
∑Md

j=1 Z
jZj

′
= Ω as in Lemma 5, and Σvk is the

estimate of Σv stored in θk. Q̄d
3(θd) is a convex upper

bound for Qd
3(θ, θk).
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Proof. Refer to Appendix B.3.

Notice, from (38), that Q̄d
3 depends on Md +1 multipliers,

{λj}Md

j=0, unlike Q̄s
3. Although Q̄d

3 upper boundsQd
3 for any

choice of λ, as in §4.1 we require Q̄d
3 to be a tight bound

such that (5) holds, i.e., we need Q̄d
3(θdk) = Qd

3(θk, θk). To

obtain such a set of multipliers {λj}Md

j=0, we propose the

following two-stage approach. At the kth iteration,

i. For each of the j = 0, . . . ,Md bounds J̄λj (θd) that
comprise Q̄d

3(θd), c.f. (38), solve the convex program

Ejk = arg min
E

J̄λj
∆

(θd)

s.t. θd = {E,EAk, EBk, EGk,Σvk} ∈ Θd

where λj∆ = 2∆.

ii. Set λj = 2
(
∆ + hj

)
with hj ∈ RTnx given by

hj = (Ēj
′

k )−1
(

Ψj
k(Ējk)−1ε̄jk + ε̄jk − C̄

′
kΣ̄−1

Y,k(Y − D̄kU)
)

(39)

where Ψj
k = C̄ ′kΣ̄−1

Y,kC̄k − Ē
j
k − Ē

j′

k . Here Ējk and ε̄jk
denote Ē and ε̄, resp., built with E = Ejk, F = EjkAk,

K = EjkBk, and L = EjkGk. C̄k and D̄k denote C̄ and
D̄k, resp., built with C = Ck, D = Dk.

The following lemma guarantees that the multipliers gen-
erated by this two-stage procedure give a ‘tight’ bound:

Lemma 7. Given θdk ∈ Θd, let {λj}Md

j=0 in (38) take the

form λ(∆)j = 2(∆ + hj) with hj given by (39). Then
Q̄d

3(θdk) = Qd
3(θk, θk), i.e. the bound is tight at θk.

Proof. Refer to Appendix B.4.

A complete summary of the latent disturbances approach
to EM with stability constraints is given in Algorithm 2.

Remark 3. This EMDL formulation includes, as a spe-
cial case, models in innovations form, c.f. [14, §4.3]. For
such models, innovations replace disturbances in (1a) and
the latent variables reduce to the initial state, x1. EM in
this setting was studied in [37]. The difference between
[37] and our approach is the M step: in [37] Q(θ, θk) is
optimized directly with a quasi-Newton method; we opti-
mize a convex upper bound on −Q(θ, θk) over a convex
parametrization of stable models.

4.3. Correlated disturbances and measurement noise

For clarity of exposition, we have considered models
in which there is no correlation between disturbances and
measurement noise. However, the methods we have pre-
sented readily extend to the correlated case, i.e.[

wt
vt

]
∼ N (0,Σsc) , Σsc =

[
Σw Σwv
Σ′wv Σv

]
. (40)

Algorithm 2 EM with latent Disturbances and
Lagrangian relaxation (EMDL)

1. Set k = 0 and initialize θk such that Ak ∈ S and
Lθk(y1:T ) is finite; c.f. §3.

2. Expectation (E) Step:

(2.1) Compute x̂1|T and Σ̂1|T as in (12).

(2.2) Compute Ẑ and Ω as in (18).

3. Maximization (M) Step:

(3.1) Update {µ,Σ1}k+1 = {x̂1|T , Σ̂1|T }.

(3.2) Assemble {λj}Md

j=0 of the form λj = 2(∆ + hj)

by computing {hj}Md

j=0 with (39).

(3.3) Obtain θdk+1 = arg minθd∈Θd Q̄d
3(θd).

(3.4) Update θk+1 with Ak+1 = E−1
k+1Fk+1, Bk+1 =

E−1
k+1Kk+1, Gk+1 = E−1

k+1Lk+1, and Σvk+1
.

4. Evaluate termination criteria, e.g. (21). If false,
k ← k + 1 and return to step 2.

With latent states, the joint likelihood becomes

pθ(y1:T , x1:T ) =

[ T∏
t=1

pθ(yt, xt+1|xt)
]
pθ(x1),

with −Qs(θ, θk) ∝ Qs
1(θ, θk) +Qs

c(θ, θk) where

−Qs
c(θ, θk) ∝

∑Ms
c

t=1

∣∣∣∣[ x̃t+1

ỹt

]
−
[
A B
C D

] [
x̃t
ũt

]∣∣∣∣2
Σ−1

sc

+T log det Σsc . (41)

Here M s
c = 2nx + ny + nu, and x̃, ỹ, ũ satisfy∑Ms

c

t=1
ζ̃tζ̃
′
t =

∑T

t=1
Eθk [ζtζ

′
t| y1:T ] ,

where ζ̃t =
[
x̃′t+1, ỹ

′
t, x̃
′
t, ũ
′
t

]′
and ζt =

[
x′t+1, y

′
t, x
′
t, u
′
t

]′
.

Clearly, (41) has the same form as (22), and so the La-
grangian relaxation of §4.1 is applicable.

Similarly, in the latent disturbances formulation the
joint likelihood can be factorized as

pθ(y1:T , x1, w1:T ) =

T∏
t=1

pθ(yt, wt|x1, w1:t−1)p(x1),

with p(yt, wt|x1, w1:t−1) given by

N
([

Cxt +Dut
0

]
,Σsd

)
, Σsd =

[
Σv Σwv

Σ′wv I

]
,

where vec(x1:T ) = N̄U + H̄Z. Introducing yct = [y′t, w
′
t]
′
,
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Cc = [C ′, 0′]
′
, and Dc = [D′, 0′]

′
we have

log pθ(y1:T , w1:T |x1) ∝∑T

t=1
|yct − Ccxt −Dcut|2Σ−1

sd

+ T log det Σsd . (42)

The resemblance to (31) is apparent. Computing the ex-
pected value of (42) leads to a quantity that takes the same
form as Qd

3 in (32), to which the Lagrangian relaxation of
§4.2 is applicable.

5. On the choice of latent variables

5.1. Singular state space models

In applications it may be known a priori that the di-
mension of the disturbance is less than that of the state
variable, i.e. nw < nx. For example, consider a mechani-
cal system in which the disturbances are forces or torques.
There are typically fewer disturbance forces than state
variables (as force directly affects acceleration, but not po-
sition or velocity, in continuous time dynamics), and so G
is rank-deficient. As the transition density pθ(xt+1|xt) =
N (Axt + But, GG

′) no longer admits a closed form rep-
resentation, when GG′ is singular, it is well known that
the standard EM algorithms based on latent states are no
longer directly applicable.

Modifications of the EM algorithm have been proposed
to circumvent this difficulty. The work of [28] introduced
a perturbation model with full-rank process noise covari-
ance, and proved that the EM iterations remain well be-
haved when the perturbation is set to zero. However, this
approach was restricted to models in which the distur-
bances and measurement noise are uncorrelated. A sub-
sequent paper [29] addressed the case of correlated state
and measurement noise, but only considered models in in-
novations form; extension to the case of models in general
form was left to future work. Furthermore, this method
requires the variance of the initial state (i.e. Σ1) to be
excluded from the estimated parameters, θ.

The latent disturbances formulation of EM, c.f. §3.2,
provides the most general solution to the difficulties asso-
ciated with singular state space models. Specifically, with
latent disturbances we can handle rank deficient G, with
the possibility of correlated state and measurement noise
(c.f. §4.3), as well as unknown initial conditions (µ, Σ1),
for models not necessarily in innovations form, c.f. Re-
mark 3. When using latent disturbances we work with the
joint likelihood function pθ(y1:T , x1, w1:T ), given in (14).
Comparing (14) to (8), we observe that the problematic
transition density is replaced by the joint distribution of
disturbances pθ(w1:T ) which remains well-defined in the
singular case, nw < nx.

5.2. Absence of disturbances or measurement noise

In this section, we study the auxiliary function Q(θ, θk)
in the limit cases of G = 0 and Σv = 0, for different choices
of latent variables. These results will offer insight into the

behavior of the EM algorithm as a function of disturbance
magnitude, which is explored in §5.3.

Proposition 8. Consider a model of the form (1), and let
θ be such that Σw = 0, i.e. disturbances are omitted from
the model. The auxiliary function built on latent states,
Qs(θ, θk), is undefined when A 6= Ak or B 6= Bk.

Proof. Refer to Appendix C.1.

Proposition 9. Consider a model of the form (1), with
dynamics of the form (13), and let θ be such that G = 0,
i.e. disturbances are omitted from the model. Furthermore,
suppose Σ1 = 0; i.e. the initial conditions x1 = µ are mod-
eled without uncertainty. Then Lθ(y1:T , x1) = Qd(θ, θk)
for all θ, θk; i.e., the auxiliary function built on latent dis-
turbances, Qd(θ, θk), reduces to the log likelihood.

Proof. Refer to Appendix C.2.

Proposition 10. Consider a first order model of the form
(1), and let θ be such that Σv = 0, i.e. output noise is
omitted from the model. The auxiliary function built on
latent disturbances, Qd(θ, θk), is undefined for θ 6= θk, i.e.
the domain of Q(θ, θk) collapses to a single point, θ = θk.

Proof. Refer to Appendix C.3.

Proposition 11. Consider a first order model of the form
(1), and let θ be such that Σv = 0, i.e. output noise is
omitted from the model. Let Qs(θ, θk) denote the auxiliary
function built on latent states, then:

i. Qs(θ, θk) is undefined for all θ such that C 6= Ck or
D 6= Dk.

ii. Qs(θ, θk) = Lθ(y1:T ) for all θ such that C = Ck and
D = Dk.

Proof. Refer to Appendix C.4.

5.3. Influence of disturbance magnitude on bound fidelity

In this section, we empirically investigate the fidelity
of Q(θ, θk) as a bound on Lθ(y1:T ), as a function of the
magnitude of the disturbances, w1:T , and the choice of
latent variables. The results are presented in Figure 1,
which depicts Qs, Qd and Lθ(y1:T ) for a first order (nx =
1) LGSS model, with A = 0.7, B = 0.3, C = 0.1, D = 0.01,
and GG′ = Σw. Each bound, Qs and Qd, is plotted as a
function of the single unknown scalar parameter θ = A.
Note that S = {A : −1 < A < 1} is convex for nx = 1;
this is not true for nx > 1.

We begin with the case of ‘small’ disturbances (i.e.
Σw � Σv) as depicted in Figure 1(a), and observe the
following: Qd(θ, θk) represents Lθ(y1:T ) with high fidelity,
whereas Qs(θ, θk) is localized about θk. Such an observa-
tion is not without precedent. For instance, in the latent
states formulation of [25, Section 10] it was noted that
an initial disturbance covariance estimate Σw = 0 results
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in θk = θ0 for all k; i.e. the model parameters are not
improved. Proposition 8 makes this observation more pre-
cise: in the 1D case of Figure 1(a), when Σw = 0, Qs(θ, θk)
is undefined for A 6= Ak. Taken together, Figure 1(a) and
Proposition 8 suggest that as Σw becomes smaller (relative
to Σv) the bound Qs(θ, θk) becomes more localized about
θk; the domain collapses to a single point, θ = θk, when
Σw = 0. Conversely, as Σw (and Σ1) decrease, Qd(θ, θk)
becomes an increasingly accurate representation of the log
likelihood, eventually reproducing Lθ(y1:T ) exactly, when
Σw (and Σ1) are identically zero, as in Proposition 9.

Turning our attention to the case of ‘large’ disturbances
(i.e. Σw � Σv) as depicted in Figure 1(b), we observe the
opposite behavior: Qs(θ, θk) faithfully represents the log
likelihood, whereas Qd(θ, θk) appears to be localized about
θk. Once more, studying the limiting case Σv = 0 offers in-
sight into this behavior: Proposition 10 states that when
Σv = 0, Qd(θ, θk) is undefined for A 6= Ak. Taken to-
gether, Figure 1(b) and Proposition 10 suggest that as Σv
decreases (i.e. as Σw increases relative to Σv), the bound
Qd(θ, θk) becomes more localized about θk; the domain
collapses to a single point, θ = θk, when Σv = 0. Con-
versely, for this 1D experiment with θ = A, Proposition
11 states that Qs(θ, θk) will reproduce Lθ(y1:T ) exactly,
when Σv is identically zero. Indeed, in Figure 1(b) with
Σv � Σw, we observe Qs(θ, θk) representing the likelihood
faithfully.

To summarize: in the case of ‘small disturbances’ (i.e.
Σw � Σv), Q

d(θ, θk) will tend to bound Lθ(y1:T ) with
greater fidelity, compared to Qs(θ, θk). In the case of ‘large
disturbances’ (i.e. Σw � Σv) the converse is true.

We conclude this section by drawing attention to the
fidelity of the bounds from Lagrangian relaxation, i.e. Q̄d

3

and Q̄s
3. In Figure 1(a), Q̄d

3 provides an effective bound on
the likelihood, despite Lθ(y1:T ) not being concave in the
neighborhood of θk. In Figure 1(b), Q̄s

3 almost perfectly
reproduces Qs, except at the boundary of the feasible set,
S, where it tends towards −∞ as desired, unlike Qs, which
remains finite for unstable models (A > 1).

6. Numerical experiments

6.1. Stability of the identified model

This section provides empirical evidence of the value
of the model stability constraints introduced in §4. We
present examples of model instability arising in the stan-
dard unconstrained latent states formulation, during iden-
tification of models depicted in Figure 4. The exact nu-
merical specification of these systems is avaiable at [24].
Figure 2 considers the case where measurement noise is
more significant than the disturbances, for singular state
space models; Figure 3 treats the ‘significant disturbances’
case with full rank covariance. In all examples, both the
true and identified models are fourth order. We make the
following observations. First, model instability can arise
even when the true spectral radius is far from unity; c.f.
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(a) ‘Small’ disturbances: Σw = 1× 10−3 and Σv = 1× 10−2.
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(b) ‘Large’ disturbances: Σw = 10 and Σv = 1× 10−2.

Figure 1: Bounds on the log likelihood Lθ(y1:T ) of a 1st order system
with a single unknown scalar parameter, A. Qs and Qd denote the
bounds based on latent states and disturbances resp., c.f. (10) and
(16). Q̄s

3 and Q̄d
3 denote the bounds from Lagrangian relaxation,

using latent states and disturbances resp., c.f. (29) and (38).

Figure 2(b) and 3(b) concerning identification of the over-
damped System 2 in Figure 4. Secondly, the consequences
of instability are varied; e.g. in Figure 2(b), model insta-
bility leads to failure of the latent states algorithm due to
poor numerical conditioning, whereas in Figure 3(a) the
spectral radius of the identified model hovers above unity
for thousands of iterations. Such a model may achieve ade-
quate performance on training data, yet behave unreliably
should the unstable modes be excited during validation.

To supplement the results in Figures 2 and 3, we ran-
domly generated 1500 stable SISO systems, of varying or-
der, with Matlab’s drss function, and report instability
of the identified models in Table 1. Specifically, to gener-
ate problem data each model was simulated for T = 2nθ
time steps (where nθ is the number of parameters in the
model) with Σv set to give a SNR of 20dB, and GG′ of
rank 1 with eigenvalue 10−4. Each identified model was of
the same order as the system used to generate the training
data. The latent states algorithm [28] was then run for 60
seconds, randomly initialized with drss. The proportion
of trials for which the identified model was unstable for at
least one iteration is recorded in Table 1.
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(a) System 1, underdamped: Σv = 1.7× 10−3.
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(b) System 2, overdamped: Σv = 0.012.

Figure 2: Spectral radius of identified models at each iteration of two
methods: our latent disturbances method (EMDL), and the latent
states method [28] (EM); c.f. Figure 4 for Bode plots of true systems.
Both models (true and identified) are 4th order. For each model,

the disturbance covariance is singular with G = [0,
√

10−5, 0, 0]′. In
each case, both algorithms were initialized with the same randomly
generated model from drss. Models were trained with T = 75 and
100 datapoints, in (a) and (b), resp.
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(a) System 1, underdamped: Σw = I4, Σv = 1.7× 10−3.
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(b) System 2, overdamped: Σw = I4, Σv = 0.012.

Figure 3: Spectral radius of identified models at each iteration of two
methods: our stable latent states method (EMSL), and the latent
states method [7] (EM); c.f. Figure 4 for Bode plots of true systems.
Both models (true and identified) are 4th order. For each model, the
disturbance covariance is full rank. In each case, both algorithms
were initialized with the same randomly generated model from drss.
Models were trained with T = 75 datapoints.

Table 1: Proportion of trials for which the identified model was un-
stable for at least one iteration, using the latent states algorithm
[28]. 300 trials were conducted for each model order. The true SISO
models were generated with drss. Each identified model was of the
same order as the true model; c.f. Section 6.1 for details.

Model size, nx 2 4 6 8 10
Unstable model 32% 32% 36% 48% 47%
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Figure 4: Bode plots of 4th order systems used in the numerical
experiments of Section 6. Refer to [24] for exact specifications.

6.2. Convergence rate and computation time

In this section, we demonstrate that although the per-
iteration complexity of our latent disturbances formula-
tion (EMDL), c.f. Algorithm 2, is much greater, total
computation time remains competitive with conventional
latent states methods in cases where measurement noise
dominates disturbances. This is due to the higher fidelity
bounds on likelihood achieved using latent disturbances,
e.g. Figure 1(a), meaning fewer iterations are required to
significantly improve the likelihood. To illustrate this, we
identify three 4th order linear models, the Bode plots for
which are given in Figure 4. Each of these systems has GG′

of rank 1, with eigenvalue 10−5 (G = [0,
√

10−5, 0, 0]′).
We set Σv to give a signal-to-noise ratio (SNR) of approx.
20dB, which means Σv is two to three orders of magnitude
larger than GG′. The experiment consists of 50 trials; in a
single trial we repeat the following process for each system
in Figure 4. First we simulate the system for T = 250 time
steps, excited by ut ∼ N (0, 1), to generate problem data
u1:T and y1:T . We then run EMDL and [28] for 30 min-
utes. Each algorithm is initialized with the same model
(randomly generated for each trial), with system matrices
close to zero.

Figure 5 presents the log likelihood as a function of
computation time. The longer per-iteration time of EMDL
is immediately apparently; tens of seconds elapse before
the first iteration completes. After 200 seconds of compu-
tation, EMDL is approx. equal to (or greater than) EM,
and after 30 minutes EMDL has surpassed EM in almost
all cases. These higher likelihoods correspond to more ac-
curate models, as revealed by Figure 6, which plots the
H∞ and prediction error (on validation data) of the sys-
tems identified in Figure 5.

For the highly resonant System 3, both formulations of
EM exhibited poor performance due to apparent capture
in local maxima or stationary points. To illustrate this
phenomenon, we compare performance with two different
initialization strategies, and show the results in Figure 7.

The “cold start” results are as above, with the algo-
rithms initialized with random system matrices close to
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Figure 5: Log likelihood as a function of computation time for EMDL
and the latent states formulation of [28] (EM). 50 trials were carried
out for each system, and T = 250 datapoints were used for fitting.
Bode plots for System 1 and 2 are depicted in Figure 4.
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Figure 6: Prediction error (on validation data) and H∞ error for
EMDL and the latent states formulation of [28] (EM). The systems
used are those reached at the conclusion of the trials depicted in
Figure 5.

zero. In Figure 7(b) we see that the normalized H∞ error
is close to unity for both choices of latent variables, indi-
cating only marginal improvement over a model with all
matrices zero. The “warm start” results follow the com-
mon approach of initializing EM with a model produced
by subspace identification. Here we used the modified sub-
space method of [32] which uses Lagrangian relaxation in
place of least-squares for the second stage in order to guar-
antee model stability. Again we observe little improvement
over the initial model in terms of prediction and H∞ er-
ror, c.f. Figures 7(a) and (b), respectively. The results
in Figure 7 suggest that for highly resonant systems, it
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(a) Prediction error.
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Figure 7: Prediction error (on validation data) and H∞ error for
(EMDL) and the latent states formulation of [28] (EM), after identifi-
cation of the highly resonant System 3, c.f. Figure 4. ‘Cold start’ and
‘warm start’ denote initialization with a random model (with system
matrices close to zero) and a model from the subspace-Lagrangian
method of [32], respectively.

can be difficult for EM algorithms to make significant im-
provements to the initial model estimate, regardless of the
choice of latent variables.

Finally, we analyse the performance of EMDL as a
function of the number of datapoints used for training, T .
Figure 8 presents H∞ and prediction error for increasing
T , for identification of System 2. System 2 was selected
because capture in local maxima is less common, allowing
us to study the asymptotic behavior of the global max-
imum more reliably. Both EMDL and the latent states
algorithm [28] were run for 30 minutes in each trial. For
EMDL, we observe an increase in accuracy (i.e., a decrease
in both H∞ and prediction error) for increasing T . In fact,
for T ≥ 200 the prediction error of the identified model is
approximately equal to that of the true model. For the la-
tent states algorithm, this trend is much less pronounced.
The weak performance of latent states, along with the la-
tent disturbances outliers, appears to be due to capture in
local maxima, as model quality fails to improve in these
cases, even after many additional iterations.

Table 2 records the mean computation time for a sin-
gle iteration of the experimental trials carried out in Fig-
ure 8. Latent states methods, including EMSL, scale lin-
early with T , as the cost is dominated by the filtering and
smoothing operations in the E step. In principle, EMDL,
is O(T 2), as optimization of each of the Md + 1 bounds
in (38) requires O(T ), [32]. In practice, all Md singular
values of Ω are not typically required for accurate approx-
imation of Q3(θ, θk).

Table 2: Mean per-iteration computation time (in seconds, to 3 sig.
fig.) for the trials in Figure 8. EMSL and EMDL denote Algorithm 1
and Algorithm 2, respectively. EMSL is included for reference.

Data length, T 50 100 150 200 250
EM [28] 0.028 0.0541 0.08 0.103 0.126
EMSL 0.197 0.214 0.235 0.254 0.271
EMDL 37.5 40.7 48.9 54.6 65.6
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Figure 8: Prediction error (on validation data) and H∞ error for
EMDL and the latent states formulation of [28] (EM). The true
model is the overdamped System 2, c.f. Figure 4. For each T , 50
trials were carried out, and each algorithm was run for 30 minutes.

7. Conclusion

This paper has incorporated model stability constraints
into the maximum likelihood identification of linear dy-
namical systems. By combining the EM algorithm and
Lagrangian relaxation, we construct tight convex bounds
on the (negative) likelihood, that can be optimized over a
convex parametrization of all stable linear systems, with
semidefinite programming. The key practical outcomes of
this work are as follows. The de facto choice of latent
states leads to the simplest algorithms, as well as higher
fidelity bounds on the likelihood when disturbances are
more significant than measurement noise (i.e. Σw � Σv).
Concerning software implementation, incorporating stabil-
ity constraints into standard latent states algorithms is
straightforward: if the identified model becomes unstable,
simply replace the usual M step (11c) with the convex
program (30), to continue the search over a convex set
of stable models. On the other hand, when measurement
noise is more significant than disturbances it may be advis-
able to formulate EM with latent disturbances. Although
the per-iteration computational complexity of the ensuing
algorithm is greater, the improved fidelity of the bounds
on the likelihood can lead to faster convergence and more
accurate models (e.g. by avoiding local maxima). Fur-
thermore, latent disturbances lead to the most broadly
applicable formulation of EM for identification of singular
state space models.
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[22] Imre Pólik and Tamás Terlaky. A survey of the s-lemma. SIAM
review, 49(3):371–418, 2007.

[23] Herbert E. Rauch, C.T. Striebel, and F. Tung. Maximum like-
lihood estimates of linear dynamic systems. AIAA Journal,
3(8):1445–1450, 1965.

[24] Thomas B. Schön. System specifications. http://user.it.uu.se/
∼thosc112/umenbergerwmssystemspec.zip. 2017.

[25] Thomas B. Schön, Adrian Wills, and Brett Ninness. Sys-
tem identification of nonlinear state-space models. Automatica,
47(1):39–49, 2011.

[26] Robert H. Shumway and David S. Stoffer. An approach to time
series smoothing and forecasting using the EM algorithm. Jour-
nal of Time Series Analysis, 3(4):253–264, 1982.

[27] Sajid Siddiqi, Byron Boots, and Geoffrey J. Gordon. A con-
straint generation approach to learning stable linear dynamical
systems. In Proceedings of Advances in Neural Information
Processing Systems 20 (NIPS), 2007.

[28] Victor Solo. An EM algorithm for singular state space models.
In Proceedings of the 42nd IEEE Conference on Decision and
Control (CDC), pages 3457–3460, Maui Maui, USA, 2003.

[29] Victor Solo. An EM algorithm for singular state space models
II. In Proceedings of the 43rd IEEE Conference on Decision
and Control (CDC), pages 3611–3612, The Bahamas, 2004.

[30] Mark M Tobenkin, Ian R Manchester, and Alexandre Megret-
ski. Convex parameterizations and fidelity bounds for nonlinear
identification and reduced-order modelling. IEEE Transactions
on Automatic Control, 62(7):3679–3686, 2017.

[31] Mark M. Tobenkin, Ian R. Manchester, Jennifer Wang, Alexan-
dre Megretski, and Russ Tedrake. Convex optimization in iden-
tification of stable non-linear state space models. In Proceedings
of the 49th IEEE Conference on Decision and Control, CDC,
Atlanta, USA, pages 7232–7237, 2010.

[32] Jack Umenberger and Ian R. Manchester. Specialized algorithm
for identification of stable linear systems using lagrangian re-
laxation. In Proceedings of the American Control Conference
(ACC), pages 930–935, Boston, USA, 2016.

[33] Jack Umenberger, Johan Wågberg, Ian R. Manchester, and
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Appendix A. Proofs for Section 3

Appendix A.1. Proof of Lemma 1

The first term in (16), Qd
1 , is identical to Qs

1, so we
focus on Qd

3 . The p.d.f. pθ(y1:T |x1, w1:T ) is given by

pθ(Y |Z) = N (Y ;µY ,ΣY ), where µY and ΣY are given
in (19). Qd

3 may then be expressed as

Eθk
[

logN (Y ;µY ,ΣY )|y1:T

]
= −Tny

2
log 2π − log det ΣY − Eθk

[
|Y − µY |2Σ−1

Y

|y1:T

]
.

Letting Ẑ and Ω, defined in (18), denote the mean and
covariance (respectively) of pθk(x1, w1:T−1|y1:T ), gives

Q3(θ, θk) ∝ −T log det Σv − tr(Σ−1
Y (C̄H̄ΩH̄ ′C̄ ′ + ∆̂∆̂′)),

(A.1)
where ∆̂ = Eθk

[
Y − µY |y1:T

]
is defined in (20). �

Appendix B. Proofs for Section 4

Appendix B.1. Proof of Lemma 4

Evaluating the supremum in (28) yields

J̄sλ(θs, t) = ε′tH
(
H ′E + E′H − Σ−1

w

)−1
H ′εt. (B.1)

Let et = x̃t+1 − Ax̃t − Bũt, such that εt = Eet. Then
substituting H = (E′k)−1Σ−1

w into (B.1) gives J̄sλ(θsk, t) =
e′tΣ
−1
w et, i.e. (28) is tight to (26) at θk. �

Appendix B.2. Proof of Lemma 5

First consider the tr(ΣY ∆̂∆̂′) term in (A.1). From
(20), ∆̂ is clearly the difference between the measured out-
put y1:T and the simulated output of the model with the
expected value of the latent disturbances, i.e. Ẑ. There-
fore, tr(ΣY ∆̂∆̂′) =

∑T
t=1 |yt − Cxt − Dut|2Σ−1

v
where

vec(x1:T ) = N̄U+H̄Z̄. Next, consider tr(Σ−1
Y C̄H̄ΩH̄ ′C̄ ′).

Decomposing Ω =
∑Md

j=1 Z
jZj

′
leads to

tr(Σ−1
Y C̄H̄ΩH̄ ′C̄ ′) =

Md∑
j=1

|C̄H̄wj |2Σ−1
Y

=
Md∑
j=1

T∑
t=1

|Cxjt |2Σ−1
v

where vec(xj1:T ) = H̄Zj ., i.e. the sum of M s simulation
error problems with Y = 0, U = 0 and Z = Zj . �

Appendix B.3. Proof of Lemma 6

As Q̄d
3(η) is defined by a summation of convex func-

tions, it is itself a convex function. Summation of the
following inequalities

J̄λ0(η, u1:T , y1:T , x̂1|T , ŵ1:T ) ≥ E(η, u1:T , y1:T , x̂1|T , ŵ1:T ),

J̄λj (η, 0, 0, xj1, w
j
1:T ) ≥ E(η, 0, 0, xj1, w

j
1:T ), j = 1, . . . , T,

tr(Σ−1
vk

Σv) + log det Σvk + ny ≥ log det Σv,

gives Q̄d
3(η) ≥ −Q3(β, θk). Notice that ny + log det Σvk +

tr(Σ−1
vk

Σv) is an affine upper bound on the concave term
log det Σv, which is tight at our current best estimate of
the covariance, Σvk . �
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Appendix B.4. Proof of Lemma 7

For θdk ∈ Θd, we have Ψk < 0, c.f. [30, Theorem 6]. The
Lagrangian in (37) is then concave in ∆, so the supremizing
∆ satisfies Ψ∆ = Ē′kh

j + C̄ ′k(Y − D̄kU)− ε̄k. Substituting
hj from (39) into the above yields Ψ∆ = ΨĒ−1

k ε̄k. As
Ψ is full rank, this implies Ēk∆ = ε̄k. Then J(θdk,∆) −
λF (θdk,∆) = J(θdk,∆) = E(θdk). �

Appendix C. Proofs for Section 5

Appendix C.1. Proof of Proposition 8

When Σw = 0, pθk(x1:T |y1:T ) is supported on the set

X (θk) = {x1:T : vec(x1:T ) = N̄U + H̄Z̃ ∀ ξ1 ∈ Rnx}

where Z̃ = [ξ′1, 0]′ and G = 0. Then,

Qs(θ, θk) =

∫
X (θk)

log pθ(x1:T , y1:T )pθk(x1:T |y1:T )dx1:T .

As Σw = 0, pθ(x2:T |x1) is deterministic. When A 6= Ak or
B 6= Bk, log pθ(x2:T |x1) = 0 for all x1:T ∈ X (θk), and so
log pθ(x1:T , y1:T ) is undefined. As a consequence, Qs(θ, θk)
is undefined.

When A = Ak and B = Bk, pθ(x2:T |x1) = 1 for all
x ∈ X (θk) and so Qs(θ, θk) can be evaluated as usual. �

Appendix C.2. Proof of Proposition 9

As G = 0, Σ1 = 0 the p.d.f. pθk(x1, w1:T |y1:T ) is triv-
ially deterministic, evaluating to unity when x1 = µ and
w1:T ≡ 0, and evaluating to zero otherwise. Therefore

Qd(θ, θk) = log pθ(y1:T , µ, 0) = log pθ(y1:T |µ).

The log likelihood can be decomposed as

Lθ(y1:T ) = log

∫
pθ(y1:T , x1)dx1

= log

∫
pθ(y1:T |x1)pθ(x1)dx1 = log pθ(y1:T |µ),

where the final equality follows from the fact that pθ(x1)
is a δ-function, at x1 = µ. �

Appendix C.3. Proof of Proposition 10

For a given θ, let xθ1:T denote the unique state sequence
that is ‘consistent’ with the data, i.e. xθ1:T , {x1:T : yt =
Cxt + Dut, t = 1, . . . , T}. There is also a correspond-
ing unique disturbance sequence, denoted wθ1:T = {w1:T :
xθt+1 = Axθt +But +Gwt, t = 1, . . . , T}.

As Σv = 0, the p.d.f. pθk(x1, w1:T |y1:T ) is a δ-function
at x1 = xθk1 and w1:T = wθk1:T . The auxiliary function is

then given by Qd(θ, θk) = log pθ(y1:T , x
θk
1 , w

θk
1:T ). We can

decompose pθ(y1:T , x
θk
1 , w

θk
1:T ) as in (14). As Σv = 0, the

p.d.f. pθ(y1:T |x1, w1:T ) is also a δ-function at x1 = xθ1
and w1:T = wθ1:T . If θ 6= θk then xθ1 6= xθk1 and wθ1:T 6=
wθk1:T . In this case pθ(y1:T |xθk1 , w

θk
1:T ) = 0 and so Qd(θ, θk)

is undefined.
When θ = θk, pθ(y1:T |xθk1 , w

θk
1:T ) = 1 and Qd(θ, θk) can

be evaluated as usual. �

Appendix C.4. Proof of Proposition 11

For a given θ, let xθ1:T denote the unique state sequence
that is ‘consistent’ with the data, i.e. xθ1:T , {x1:T : yt =
Cxt + Dut, t = 1, . . . , T}. As Σv = 0, given y1:T both
pθk(x1:T |y1:T ) and pθ(y1:T |x1:T ) are δ-functions at x1:T =
xθ1:T . The auxiliary function is then given by

Qs(θ, θk) = log pθ(y1:T , x
θk
1:T ).

Let us now consider the two cases:

i. When C 6= Ck or D 6= Dk, xθ1:T 6= xθk1:T and so

pθ(y1:T |xθk1:T ) = 0. Therefore, Qs(θ, θk) is undefined.

ii. When C = Ck and D = Dk, xθ1:T = xθk1:T and so

Qs(θ, θk) = log pθ(y1:T |xθ1:T )pθ(x
θ
1:T ) = log pθ(x

θ
1:T ).

The likelihood can be expressed as

Lθ(y1:T ) = log

∫
pθ(y1:T |x1:T )pθ(x1:T )dx1:T

= log pθ(x
θ
1:T ),

where the second inequality comes from the fact that
pθ(y1:T |x1:T ) is a δ-function. Therefore, Lθ(y1:T ) =
Qs(θ, θk). �
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