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Abstract— Positive systems frequently appear in applications,
and enjoy substantially simplified analysis and control design
compared to the general LTI case. In this paper we construct
a polytopic parameterization of all stable positive systems,
and a convex upper bound for simulation error (a.k.a. output
error) for which the resulting optimization is a linear program.
Previous work on analogous methods for both the positive and
general LTI case result in semidefinite programs. We exploit
the decomposability of the constraints in these linear programs
to develop distributed solutions applicable to identification of
large-scale networked systems.

I. INTRODUCTION
Traffic flow through urban centers, antiretroviral treatment

of infectious disease and the smart electricity grid are but a
few examples of the diverse array of large scale systems
for which modeling and control is becoming increasingly
important. In many of these applications, physical constraints
imply that the quantities of interest - e.g., number of cars
passing through a tunnel, concentrations of pathogens, or
power through a transmission line - are nonnegative. In such
cases, it is appropriate to model the situation as a so-called
positive system, in which the set of nonnegative internal
states remains invariant under the dynamics.

Over the past decade, positive systems have received in-
creased attention from the control community, largely due to
the fact that many performance and stability results in linear
system theory are simplified when the dynamics are positive.
For example, static state and output feedback controllers
were designed using linear programming in [1] and [2],
respectively. Stability and dissipativity theory for positive
systems based on linear storage functions and supply rates
was developed in [3], and employed for robust stability anal-
ysis in [4]. Similarly, the work of [5] provided a bounded real
lemma for positive systems based on a diagonal quadratic
storage function, which enabled the design of structured H∞
controllers. More recently, [6] has presented novel versions
of many of the above results, with an emphasis on scalable
controller synthesis and verification.

Model-based design and analysis depends of course on the
availability accurate system models. While in some applica-
tions these come from first-principles, when physical models
are either unknown or too complex, some form of data-driven
modeling, i.e. system identification, is appropriate [7].

Two major problems in system identification are model in-
stability and non-convexity of the standard quality-of-fit cost
functions [8]. Subspace methods have been very successful
in identifying linear state-space models from input-output
data [9], [10], and various strategies have been developed
to guarantee stability of the identified model; c.f. [11], [12],
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[13], [14]. In a series of recent papers a new approach was
developed for obtaining convex parameterizations of stable
models and convex upper-bounds for simulation error [15],
[16], [17]; these methods were extended to problems with
noisy data in [18], [19], [20]. In the context of positive
systems, the work of [21] formulated the subspace identi-
fication problem, subject to model stability constraints, as
a semidefinite program (SDP) with a diagonal quadratic
Lyapunov function, rather than a dense quadratic Lyapunov
function as in the general LTI case [13]; see also [22, §18].

Despite this progress, none of the above methods are
concerned with identification of large scale systems. Dis-
tributed optimization techniques, such as dual decomposition
[23], the alternating direction method of multipliers [24]
and game theoretic approaches [25], [26], can be difficult
to apply to identification methods based on SDP, as the
decomposition of the associated barrier functions can be
problematic. In this paper we exploit the simplified control-
theoretic results available for positive systems to develop
convex optimization problems for system identification that
admit scalable, distributed solutions.

II. PRELIMINARIES
A. Notation

For real matrices and vectors A,B ∈ Rm×n, A < (≤)B
denotes element-wise inequality, whereas A ≺ (�)B means
B−A is positive definite (semidefinite). The transpose of A
is denoted A′. For A ∈ Rm×n, A(i,j) denotes the scalar
entry in the ith row and jth column. We define the sets
Rn++ := {a ∈ Rn : a > 0} and Rn+ := {a ∈ Rn : a ≥ 0}.
For a ∈ Rn, |a| ∈ Rn+ denotes element-wise absolute value,
and |a|σ :=

(∑n
i=1 |a(i)|σ

)1/σ
denotes the σ-norm. We

define 1 ∈ Rn as the vector with all elements equal to 1;
the dimension n can be inferred from the context. We use
A(ωi,:) to denote the nonzero elements of the ith row of A,
and A(:,ωi) for the nonzero elements of the ith column.

B. Positive state space models
This paper concerns the identification discrete time posi-

tive LTI models of the form

xt+1 = Axt +But (1a)
yt = Cxt +Dut (1b)

where u ∈ Rnu , y ∈ Rny and x ∈ Rnx denote the input,
output and state, respectively. For convenience, we group all
model parameters into a single variable, Σ = {A,B,C,D}.

Definition 1. A system of the form (1) is said to be positive
if A,B,C and D are element-wise nonnegative.

The notation Σ ≥ 0 is used to denote positive systems
of the form (1), and should be interpreted as shorthand for
A ≥ 0, B ≥ 0, C ≥ 0 and D ≥ 0. Nonnegativity of the state



variable xt greatly simplifies Lyapunov stability analysis of
positive systems:

Lemma 1 ([27, Lemma 6.2.1]). For A ≥ 0 the following
statements are equivalent:
1. The matrix A is Schur stable.
2. There exists p ∈ Rn++ such that p′A < p′.

The dynamical systems interpretation of this result is that
V (x) = p′x serves as a linear Lyapunov function for the
system, Σ. We denote the set of all stable positive models,
and corresponding Lyapunov functions p, by

Θ , {p,Σ : Σ ≥ 0, p ∈ Rnx
++, p

′A < p′}. (2)

Observe that this set is not jointly convex in A and p, due to
the bilinear stability condition, p′A < p′. For convenience,
we will often group a model Σ and vector p as θ = {p,Σ}.

C. Problem data

We assume data of the form ZTDT = {ũt, ỹt, x̃t}Tt=1 where
ũ, ỹ and x̃ denote (possibly noisy) measurements of u, y
and x, respectively. Notice that we require measurements of
the state x. In this paper, we have in mind the identification
of networked systems such that x =

[
x1, . . . , xn

]
, where

xi denotes the measurable state at node i, e.g. transport
networks where xi denotes traffic density [28]. This is a
rather restrictive assumption, necessitated by the fact that
popular state estimation techniques, e.g. subspace methods,
return state estimates subject to an arbitrary coordinate
transformation [29, §2.2], which may not be consistent with
a positive realization of the dynamics. Subspace methods for
positive systems are an important subject for future research.

D. Simulation error

In system identification, a common measure of model
quality, given a dataset ZTDT, is the simulation error, defined
as Ēσ ,

∑T
t=1 |ỹt − yt|σσ , where yt represents the simulated

output: yt = CAt−1x̃1 + Σt−1
τ=1CA

t−1−τBũτ + Dũt. This
dependence on the simulated output renders Ēσ a highly
nonlinear function of the model parameters.

E. Problem statement

In this paper, our goal is to minimize (globally) the
simulation error via a distributed search over all stable
positive systems; i.e., we seek a distributed solution to
minθ∈Θ Ēσ , for σ = 1, 2. Nonconvexity of the feasible set
Θ, and nonlinearity of the objective Ēσ , make this is a
challenging optimization problem that we do not attempt to
solve directly. Rather, we proceed by constructing a polytopic
parametrization of all stable positive systems, and develop
convex approximations to the simulation error.

III. MINIMIZATION OF EQUATION ERROR

Global minimization of the simulation error is a
formidable task, due to the nonlinear dependence of Ēσ on
the model parameters, Σ. A common approach for circum-
venting this difficulty is to minimize the equation error

E2 =

T∑
t=1

|ỹt−Cx̃t−Dũt|22 +

T∑
t=1

|x̃t+1−Ax̃t−Bũt|22 (3)

in place of the simulation error; this is the approach adopted
by, e.g., subspace methods. In this section, we show that
minimization of a related cost function, the weighted equa-
tion error, subject to the model stability constraint (2) can
be formulated as a convex optimization problem.

A. Constrained minimization for LTI positive systems

From Lemma 1, stability of a positive linear system is
equivalent to the existence of p ∈ Rnx

++ such that A′p−p < 0.
By introducing the change of variables A = PA, where
P = diag(p(1), . . . , p(nx)) is a diagonal matrix such that
A(i,j) = p(i)A(i,j), the stability condition can be written as
A′1− p < 0, which is linear in p and A.

This motivates the introduction of a new cost function, the
weighted equation error [21], [13] defined

Ep2 ,
T∑
t=1

|ηt|22 +

T∑
t=1

|Pεt|22. (4)

where εt = x̃t+1−Ax̃t−Bũt and ηt = ỹt−Cx̃t−Dũt. By
defining a second change of variables, B = PB, we have
Pεt = Px̃t+1 − Ax̃t − Bũt, and thus the cost function Ep2
is a convex quadratic function of P,A,B, C and D.

Remark 2. Notice that A′p − p < 0 holds for any positive
scalar multiple of p, and so A′p − p + δ1 ≤ 0, for some
δ > 0, defines an identical condition, with no conservatism.

As in Section II-B, we group the model parameters
under this change of variables into a single vector, Σ̄ =
{A,B, C,D}. In light of Remark 2,

Θ̄s , {p, Σ̄ : Σ̄ ≥ 0, p ≥ δ1, A′1− p+ δ1 ≤ 0} (5)

defines a convex parametrization of all stable positive mod-
els: θ̄ = {p, Σ̄} ∈ Θ̄s implies θ = {p,Σ} ∈ Θ where
Σ =M(θ̄) , {P−1A, P−1B, C,D}.

Therefore, the optimization problem:

min
θ̄∈Θ̄s

Ep2 (6)

represents minimization of a convex quadratic function sub-
ject to linear inequality constraints; i.e., a QP.

B. Stable minimization of `1-norm of equation error

Further reductions in computational complexity can be
achieved by minimizing the `1-norm of the weighted equa-
tion error, defined

Ep1 ,
T∑
t=1

|ηt|1 +

T∑
t=1

|Pεt|1. (7)

By employing the same change of variables introduced in
§III-A, the optimization problem minθ̄∈Θ̄s

Ep1 represents a
linearly constrained least deviations problem, which can be
formulated as a LP by introducing slack variables for the
absolute values in the cost function; see, e.g., [30, §6.1].



C. Relationship to existing methods
In the context of positive systems, this weighted equation

error technique has been employed in the work of [21], in
which the following optimization problem was proposed:

min
θ̄

Ep2 (8a)

s.t. A ≥ 0,B ≥ 0, C ≥ 0, D ≥ 0 (8b)[
P − δInx A′
A P

]
� 0. (8c)

The stability condition (8c) is identical to that which appears
in the stable identification of general LTI systems [13],
except here use of diagonal P introduces no conservatism,
as the model is constrained to be positive. While this does
introduce some degree of simplification over the general LTI
case (i.e. fewer decision variables), as (8c) represents a LMI,
(8) must be solved as a SDP.

In the formulation of §III-A, we invoke the simpler sta-
bility condition in Lemma 1, which enables model stability
to be enforced with the linear inequality (5), in place of the
LMI (8c). The resulting QP (6) has superior scalability to
the SDP (8), and, in particular, introduces the possibility for
a distributed solution, as shall be shown in §V.

IV. BOUNDING SIMULATION ERROR
Generally speaking, minimization of equation error (3),

is not guaranteed to identify models with good long term
predictive power, as small equation error does not necessarily
imply small simulation error. In this section, we derive
a convex condition that ensures the `1-norm of weighted
equation error, Ep1 , upper bounds the simulation error.

A. `1-gain of incremental error dynamics
The goal of this section is to develop a convex upper bound

for the simulation error. To this end, by expressing Ē1 as
T∑
t=1

|ηt + Cx̃t − Cxt|1 ≤
T∑
t=1

|ηt|1 +

T∑
t=1

|Cx̃t − Cxt|1

where xt denotes the simulated state sequence given by
xt+1 = Axt +Bũt, it is evident that it is sufficient to upper
bound

∑
t |Cx̃t − Cxt|1. To study this quantity, we rewrite

the equation error, εt, as x̃t+1 = Ax̃t+Bũt+ εt and remark
that the simulated state sequence, xt, and the estimated state
sequence x̃t, are in fact solutions to the same dynamical
system. Specifically, by considering the system

xt+1 = Axt +Bũt + vt (9)

with input vt and initial condition x1 = x̃1, we observe:
i. for vt = 0 the solution to (9) is xt.

ii. for vt = εt, the solution to (9) is x̃t.
Defining ∆t := x̃t − xt, it is clear that ∆t satisfies the
incremental error dynamics given by the system

∆t+1 = A∆t + εt (10a)
z = C∆t. (10b)

This analysis, much in the spirit of [15], has uncovered a
relationship between the equation error εt, and the quantity
of interest C(x̃t − xt), which can be quantified as the `1-
gain of the incremental error system in (10). Furthermore,

observe that when the original system (1) is positive, so too
are the incremental error dynamics in (10). The following
result characterizes the `1-gain of positive systems:

Lemma 3 ( [4, Lemma 1]). Let (1) denote a positive system.
The following statements are equivalent:
1. The matrix A is Schur and the `1-gain of u 7→ y is less

than γ.
2. There exists p ∈ Rnx

++ such that[
A B
C D

]′ [
p
1

]
<

[
p
γ1

]
. (11)

Lemma 3 can be used to quantify the contribution of each
‘channel’ of the equation error ε to the simulation error:

Lemma 4. Given a stable, positive system of the form (1),
the `1-gain from the jth input channel ε(j) to the output z of
the incremental error system (10), is given by p(j), where

p = arg min
p∈Rnx

++

∑
i

p(i) s.t. C ′1 + (A′ − I)p < 0. (12)

Lemma 4 implies that for minimization of Ep1 subject to
the constraint C ′1 + A′p − p < 0, the vector p serves as
both a stability certificate (linear Lyapunov function) and
a meaningful weighting of equation error. Specifically, p
penalizes most heavily the ‘channels’ of εt that contribute
most significantly to the simulation error, as p encodes the
`1-gain of ε 7→ z in the incremental error system (10).

We define the set of all positive models Σ̄ and vectors p
that satisfy the constraint in (12) by

Θ̄b , {p, Σ̄ : Σ̄ ≥ 0, p ≥ δ1, C ′1+A′1−p+δ1 ≤ 0} (13)

and remark that this set in convex in Σ̄ and p.

Remark 5. The strict inequality in (12) has been replaced by
a non-strict inequality in (13) to ensure that the constraints
lead to a well posed optimization problem. The extent of the
conservatism introduced by this approximation is character-
ized by δ, and can be made arbitrarily small.

B. Upper bound on simulation error
We are now in a position to present the main theoretical

contribution of this paper:

Theorem 6. Given a dataset ZTDT, consider the LP:

θ̄∗ = arg min
θ̄∈Θ̄b

Ep1 . (14)

where Ep1 is given in (7). The following statements hold:
1. Ep1 ≥ Ē1 for all θ̄ ∈ Θ̄b.
2. Θ̄b, defined in (13), is a parametrization of all stable

positive systems.
3. If ZTDT represents noiseless data signals generated by the

true system, {p̃, Σ̃} ∈ Θ̄b, then Ep1 = Ē1 = 0, i.e., the
upper bound is tight.

V. ALGORITHMS FOR DISTRIBUTED
IDENTIFICATION

In §III and §IV, we derived convex approximations to the
problem of minimizing simulation error over all stable posi-
tive systems. In this section we present distributed solutions
to the convex optimization problems (6) and (14).



A. Distributed problem formulation
Consider a multiagent system consisting of a set of agents

denoted N = {1, . . . , nx + ny}. Each agent i ∈ N , for
i ≤ nx, is associated with an element of the state vector x,
i.e., agent i is associated with x(i). Agent i is responsible
for estimating the model parameters that directly affect the
dynamics of the ith state, i.e. A(i,:) and B(i,:), and is assumed
to measure x̃(i) directly. Similarly, each agent i ∈ N , for
i > nx, is associated with an element of the output y.
Specifically, agent i > nx measures ỹ(i−nx), and maintains
the parameters that effect the i−nth

x output, i.e., C(i−nx,:) and
D(i−nx,:). Working with the change of variables introduced
in §III-A, we group these parameters into the vector vi ∈
Rdi , defined for i ∈ N by

vi =
[
A(ωi,:)

′
B(ωi,:)

′
p(i)
]′
, i ≤ nx (15a)

vi =
[
C(ωi−nx ,:)

′
D(ωi−nx ,:)

′
]′
, i > nx (15b)

where A(ωi,:) denotes the nonzero elements of A(i,:).
The cost function, weighted equation error, may then be

decomposed into the sum of local cost functions, i.e. Epσ =∑
i∈N φ

σ
i (vi), where

φσi (vi) =

{∑T−1
t=1 |p(i)ε

(i)
t |σσ, i ≤ nx∑T

t=1 |η
(i−nx)
t |σσ, i > nx,

(16)

with σ = 1, 2 for problems (14) and (6), respectively.
Despite separability of Epσ , communication between agents
is necessitated by the constraints θ̄ ∈ Θ̄s, c.f. (5), and
θ̄ ∈ Θ̄b, c.f. (13), which couple parameters maintained
different agents. We define the neighbors of agent i as the
set of agents with which i exchanges model parameters.

B. Alternating direction method of multipliers
In this section, we present a decentralized solution to

problem (6), i.e. minθ̄∈Θ̄s
Ep2 , based on the alternating di-

rection method of multipliers (ADMM). We represent the
quadratic cost function1 as

∑
t |Pεt|22 = v′Qv =

∑
i v
′
iQivi

where v =
[
v′1 . . . v′nx

]′
and Q = blkdiag(Q1, . . . , Qnx

).
For convenience, we define Nx = {1, . . . , nx}.

To obtain a formulation of ADMM amenable to a decen-
tralized implementation, we introduce a copy of the decision
variable v, which we denote s. Let As, Bs and ps denote
copies of A, B and p respectively, such that s =

[
s′1 . . . s

′
nx

]′
where si =

[
A(ωi,:)

′

s B(ωi,:)
′

s p
(i)
s

]′
. In this way, {si}i∈Nx

represents a partition of the model parameters w.r.t. the
rows of A, B and p. Let us introduce a second partition
of s, {sci}i∈Nx , w.r.t. the columns of A, B and p′, i.e.

sci =
[
A(:,ωi)

′

s B(:,ωi)
′

s p(i)
]′

. For ease of exposition, we
define the row and column neighbors of agent i by the sets
NR
i = {j : i ∪ A(j,i) 6= 0} and NC

i = {j : i ∪ A(i,j) 6= 0}.
We may now express the original problem (6) as

min
s,v

v′Qv +

nx∑
i=1

gi(sci), s.t. v − s = 0

1Minimization of
∑

t |ηt|22 can be trivially parallelized, and carried out
independently to minimization of

∑
t |Pεt|22 so we restrict our attention to∑

t |Pεt|22.

where
∑
i∈Nx gi(sci) encodes the nonnegativity constraints

A ≥ 0, B ≥ 0 and stability condition 1′A− p′ ≤ −δ1′, i.e.

gi(sci) = I
(
A(:,ωi)
s

)
+I
(
B(:,ωi)
s

)
+I
(

1′A(:,ωi)
s − p(i) + δ

)
.

Here I(x) denotes the element-wise indicator function,
which is zero for all x ≥ 0, and infinite elsewhere. The
Lagrangian for the scaled formulation of ADMM is

Lρ(v, s, µ) =
∑
i∈Nx

v′iQivi +
∑
i∈Nx

gi(sci) +
ρ

2
‖v − s+ µ‖2,

where ρ denotes the penalty parameter, and µ denotes
the scaled dual variable (i.e. Lagrange multiplier). The kth

iteration of the ADMM involves the following computations:

vk+1
i = arg min

vi
v′iQivi +

ρ

2
‖vi − ski + µki ‖2 (17a)

= (2Qi + ρI)−1(ρ(ski − µki )) (17b)

sk+1
ci = arg min

sci
gi(sci) +

ρ

2
‖vk+1
ci − sci + µkci‖2 (17c)

µk+1
i = µki + vk+1

i − sk+1
i . (17d)

C. Gradient play on state-based potential games

The formulation of the ADMM in §V-B gave no consid-
eration to robustness against imperfect inter-agent communi-
cation. In this section, we address this by adopting a recently
developed approach to distributed optimization, in which the
solution is obtained from the Nash equilibrium of a state-
based potential game [25], [26]. Such an approach is known
to be robust to delays in communication and heterogeneous
clock rates [25]. We can represent minθ̄∈Θ̄b

Ep1 in a form
compatible with these methods as follows:

min
vi∈Vi,i∈N

∑
i∈N

φ1
i (vi), s.t.

∑
i∈N

M l
ivi + δ ≤ 0, l ∈ Nx,

(18)

where vi is defined in (15), Vi = Rdi+ for i ∈ N enforces
nonnegativity of the model parameters, and

∑nx

i=1M
k
i vi +

δ ≤ 0 encodes the dissipation inequality from (13), i.e.∑nx

i=1A(i,l) − p(l) + C(i,l) ≤ −δ, for l ∈ Nx.
To develop a decentralized solution to (18), we employ

the method of [31] and introduce auxiliary variables ei =
{eli}l∈Nx for i ∈ N , where eli denotes agent i’s estimate of
the lth constraint, i.e. eli ∼

∑nx

j=1M
l
jvj + δ. We can now

define a state-based potential game equivalent to (18) by
introducing a state ξi = (vi, ei) for each agent i ∈ N , as
well as a state action ξ̂i = (v̂i, êi). Here, êi = {êli}l∈Nx

with êli = {êli→j}j∈Ni
. The term êli→j denotes the change in

the estimation of the lth constraint that agent i communicates
to agent j ∈ Ni. Agent states then evolve according to the
dynamics (ṽ, ẽ) = f(ξ, ξ̂) given explicitly by

ṽi = vi + v̂i (19a)

ẽli = eli +M l
i v̂i +

∑
j∈Ni

êlj→i −
∑
j∈Ni

êli→j . (19b)

The introduction of estimation variables ei decouples the
constraints in (18). Each agent may then be assigned its own



cost function, which depends only on the states (and actions)
of neighboring agents (c.f. [31, §III-B] for details):

Ji(ξ, ξ̂) = φ1
i (ṽi) + β

∑
j∈Ni

∑
l∈Nx

(
max(0, ẽlj)

)2
. (20)

Here β > 0 denotes a trade-off parameter, which balances
agent i’s local cost function with the penalty on inconsis-
tencies between estimation terms. To solve (18), each agent
i ∈ N minimizes its own individual cost function Ji. Whilst
any almost any optimization policy can be employed, we
use a gradient play algorithm (c.f., e.g., [26, §4]). At each
iteration, agent i’s state is updated in accordance with (19),
with expressions for v̂i and êli→j given in [31, §4].

Finally, it is clear that the gradient play policy outlined
above requires agent i to communicate with neighboring
agents j ∈ Ni. However, unlike the ADMM algorithm in §V-
B, it is not clear how this neighbor set should be specified.
In fact, any specification of the neighbor sets {Ni}i∈N that
gives rise to an connected, undirected communication graph
is sufficient; c.f. [31, Theorem 1]. The effect of different
choices of {Ni}i∈N is a subject for future research.

VI. CASE STUDIES
A. Scalability of identification under stability constraint

In this section we illustrate the effect that replacing
the LMI stability condition in (8c), with the simple linear
inequality in (5), has on the scalability of minimization
of Ep2 subject to model stability and positivity constraints.
Specifically, we compare the QP (6) of §III-A to the SDP
(8) of §III-C, proposed by [21]. The comparison comprised
10 experimental trials. In each trail, we randomly generated
a stable positive system, in which A was banded with 4
diagonals (on each side of the main diagonal). For such a
system, the number of model parameters increases linearly
with nx. The system was simulated for T = 1 × 104

time steps,2 and Z̃TDT was obtained by adding Gaussian
disturbances to the simulated {xt}Tt=1 and {yt}Tt=1. Both the
QP and SDP were formulated with Yalmip [32], and solved
by interior point methods (IPM) using Mosek 7.0.0.119.
Average computation times for increasing model order nx
are given in Table I.

TABLE I: Computation time (in seconds, to 3 s.f.) for varying model order
nx, with nu = 5 and T = 1× 104, averaged over 10 trials. Computations
were carried out on a desktop machine (Intel i7, 3.40GHz 8GB RAM).

nx 250 500 1000 1500 2000 4000 8000
SDP 10.9 73.6 540 1670 - - -
QP 0.0642 0.128 0.238 0.388 3.66 - -
ADMM 11.0 23.6 43.7 67.2 90.3 178 363

From Table I it is clear that, as expected, QP scales
better than SDP, with regards to both computation time and
memory requirements. Computation times increase (approx.)
linearly and exponentially with increasing nx, for the QP
and SDP, respectively. Furthermore, the QP can handle
nx < 2500 before memory is exhausted, whereas the SDP is
limited to nx < 1500. Table I also demonstrates that ADMM

2As
∑T

t=1 |Pεt|22 can be expressed as v′Qv, c.f. §V-B, the size of the
optimization problem, for each method, is independent of T .

is capable of identifying higher order systems, given the same
available memory, compared to IPM.

B. Identification of structured systems
In this section, we illustrate the advantages of the bound on

simulation error developed in §IV-B over the basic stability
condition of §III, in the context of identification of structured
systems. Incorporating known structural information is rec-
ognized as a central problem in the industrial application of
system identification algorithms [8, Section 6]; e.g., it may be
known that two components are identical, and connected in
series. To enforce model stability under structural constraints
of the form A(i,j) = A(k,l), we require A(i,j)/p(i) =
A(k,l)/p(k), which is not jointly convex in A and p.

To circumvent this nonconvexity, one may consider a two-
step approach, solving first (21a) and then (21b):

θ̄ = {pd, Σ̄} , arg min
θ̄∈Θb

Ep1 (21a)

θ̄d , arg min
θ̄∈Θ̄b

Ep1 s.t. p = pd, A
(i,j) = A(k,l) (21b)

for all i, j, k, l for which we wish to enforce such constraints,
based on a priori structural knowledge. The idea is that
(21a) furnishes us with an approximation of p, which is then
fixed as p = pd in (21b), such that the structural constraints
p

(i)
f A(i,j) = p

(k)
f A(k,l) are convex in A.

To demonstrate the advantages of enforcing θ̄ ∈ Θ̄b (c.f.
§IV-B) over θ̄ ∈ Θ̄s (c.f. §III) we compare the approach in
(21) to the following similar two-step procedure:

θ̄ = {ps, Σ̄} , arg min
θ̄∈Θ̄s

Ep1 (22a)

θ̄s , arg min
θ̄∈Θ̄s

Ep1 s.t. p = ps, A
(i,j) = A(k,l). (22b)

Notice that in (21) we enforce the dissipation inequality
p′A− p′ + 1′C ≤ −δ1′, whereas in (22) we simply enforce
the stability condition p′A− p′ < 0. The difference between
these two conditions is illustrated by identifying a model Σ
with structure of the form:

A =

[
A11 A12

A21 A22

]
, B =

[
B1 0
0 B2

]
, C =

[
C1 0

]
where A11 = A22 and B1 = B2. The interpretation is that
Σ represents two identical subsystems, that are coupled by
A12 and A21, however only the first subsystem contributes
directly to the measured plant output.

We generate a dataset from a model Σ̃ with parameters:

A11 = [0.2, 0.7; 0.5, 0.4], A22 = [0.5, 0.2; 0.4, 0.7],

A12 = [0, 0.001; 0, 0.02], A21 = [0.01, 0.05; 0.03, 0.01],

B1 = [0.1; 0], B2 = [0.2, 0], C1 = [1, 0].

To form ZTDT, ỹ and x̃ were taken to be the true simulated
quantities, corrupted by additive Gaussian noise. Notice that
Σ̃ is not in the model class, as there is some mismatch
between the two subsystems that are assumed to be identical.

The normalized error of each identified model, defined as
Ē1/

∑
t |ỹt|, for 1000 experimental trials is plotted in Fig. 1,

from which it is evident that (21) outperforms (22). Greater
insight can be gained by studying Fig. 2, which depicts the
equation error of Σd (from (21)) and Σs (from (22)), for a
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Fig. 1: Normalized simulation error for models Σd, identified by (21), and
Σs, identified by (22). 1000 experimental trials were conducted.
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Fig. 2: Equation error for Σd from (21), and Σs from (22). The approach of
(21) detects that equation error in x1 and x2 contributes most significantly
to simulation error, and returns a model that achieves good fit in these states,
at the expense of poor fit in x3 and x4, due to structural constraints.

typical experimental trial. The `1 gain from ε to Ē1 for the
true model Σ̃ is given by [4.66, 5.44, 0.09, 0.11], for each
state, respectively; i.e. equation error in x1 and x2 contribute
most significantly to simulation error. In this trial, pd =
[4.11, 4.51, 0.25, 0.30] and ps = [1.03, 1.34, 1.11, 1.09] ×
10−4. As p functions as a weight on equation error, (21)
will prioritize minimization of equation error in x1, x2, at
the expense of poor fit in x3, x4; c.f. Fig. 2. This accounts
for the superior performance of Σd over Σs, in Fig. 1.
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