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Abstract— This paper concerns the problem of learning ro-
bust LQ-controllers, when the dynamics of the linear system are
unknown. First, we propose a robust control synthesis method
to minimize the worst-case LQ cost, with probability 1 − δ,
given empirical observations of the system. Next, we propose
an approximate dual controller that simultaneously regulates
the system and reduces model uncertainty. The objective of the
dual controller is to minimize the worst-case cost attained by
a new robust controller, synthesized with the reduced model
uncertainty. The dual controller is subject to an exploration
budget in the sense that it has constraints on its worst-case cost
with respect to the current model uncertainty. In our numerical
experiments, we observe better performance of the proposed
robust LQ regulator over the existing methods. Moreover, the
dual control strategy gives promising results in comparison with
the common greedy random exploration strategies.

I. INTRODUCTION

Decision making in uncertain dynamic environments is
a task of fundamental importance in a number of fields.
Though the subject has received steady attention in control
since the advent of ‘dual control’ in the 1960s [1], it has
witnessed a resurgence in interest due to the recent success
of reinforcement learning (RL), particularly in games [2], [3].
In such a setting, decisions are made with two objectives in
mind. First, there is a goal to be achieved, typically a cost to
be minimized. Second, due to the uncertainty there is a need
to gather information about the environment, often referred
to as ‘learning’ via ‘exploration’. These two objectives are
often competing, a fact known as the exploration/exploitation
trade-off in RL.

In real-world applications, effective exploration should not
compromise the safe and reliable operation of the system.
Furthermore, exploration should be application specific; ide-
ally, it should not excite the system arbitrarily, but rather
in such a way that the information gathered subsequently is
useful for achieving the goal (reducing the cost).

This paper is concerned with control of uncertain linear
dynamical systems, with the goal of minimizing infinite
horizon quadratic cost (on states and inputs). We present
control policies that achieve robust, application-oriented ex-
ploration. For robustness, we bound (with high probability)
the cost of the policy on the true, but unknown, system during
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exploration. By application-oriented, we mean that the policy
is designed to excite the system so as to reduce uncertainty in
such a way that, given this new information, the cost achieved
by redesigning a robust controller is minimized.

A. Related work

Study of simultaneous learning and control of dynamical
systems began with the introduction of ‘dual control’ [1], [4]
in the 1960s. Though the formulation was clear, synthesis via
dynamic programming (DP) was intractable. Design of such
controllers was restricted to special cases, e.g., linear systems
with finite state/decision spaces [5], or relied on simplifying
approximations to the problem [6]. Nevertheless, these early
efforts [7] established the importance of balancing ‘probing’
(exploration) with ‘caution’ (robustness).

Effective exploration has strong connections to the topic
of experiment design; in particular, the value of choosing
inputs with consideration of the purpose of the model was
recognized in [8]. Convex problem formulations [9], [10]
ultimately led to the application-oriented and least-costly ex-
periment design paradigms [11], [12], in which the objective
is to reduce model uncertainty such that certain performance
criteria can be achieved, while minimizing disruption to
the system or experiment time. This paved the way for
application-oriented experiment design approaches to dual
control [13], cf. also [14], [15], [16], [17], [18] for adaptive,
dual and data-driven model predictive control applications.
However, with some exceptions, e.g. [19] (on which this
work builds), these methods do not consider robustness of the
control strategies to model uncertainty, and indeed assume
that the true model parameters are known.

In contrast, we consider worst-case design with respect to
a set of models for robustness. Another aspect of identifica-
tion for control [20], [21] is concerned with exploration for
reduced complexity modeling.

Spurred by the success of RL in games, learning for
control has witnessed a resurgence of interest, with particular
attention on linear quadratic control. In RL the goal is
typically to minimize regret. Works such as [22], [23], [24]
employ the so-called ‘optimism in the face of uncertainty’
(OFU) principle, which optimizes control actions for the
‘best-case’ model in the uncertain set. This leads to optimal
regret but requires the solution of intractable non-convex
optimization problems. Alternatively, the works of [25], [26]
employ Thompson sampling, which optimizes the control
action for a system drawn randomly from the posterior
distribution over the set of uncertain models, given data.
None of the works above consider robustness, which is
essential for implementation on physical systems.



Robustness is studied in the so-called ‘coarse-ID’ family
of methods, c.f. [27], [28], [29]. In [29], sample convexity
bounds are derived for LQR with unknown linear dynamics.
This approach is extended to adaptive LQR in [27], however,
the policies are not optimized for exploration and exploita-
tion jointly; exploration is effectively random.

B. Contributions and paper structure
This paper presents robust dual control for linear systems,

cf. §II-A for a detailed problem formulation. By ‘robust’ we
mean optimizing for the worst-case performance, which leads
to bounds on performance for the true system (with high
probability). Our specific contributions are as follows: i) we
present a convex procedure for design of a robust controller
that minimizes the worst-case cost on the true unknown
system, with high probability, cf. §III; ii) we present a convex
procedure for design of a dual controller that minimizes the
worst-case cost achieved by a robust controller redesigned
with information gathered during exploration, subject to
worst-case constraints on the cost of exploration, cf. §IV.
Performance of the proposed methods are investigated nu-
merically in §V.

II. PRELIMINARIES

A. Problem statement
We consider discrete linear time-invariant dynamical sys-

tems given by

xt+1 = Axt +But + wt, wt ∼ N
(
0, σ2

wI
)
, (1)

where xt ∈n, ut ∈p and ωt ∈n denote the state, in-
put and process noise, respectively, at time t. We assume
that xt is directly measurable. Our objective is to min-
imize the expected infinite horizon linear-quadratic cost
limT→∞ 1

T E[
∑t=T
t=0 x

>
t Qxt + u>t Rut], where Q and R are

user defined positive semidefinite matrices. When A and B
are known, the optimal policy is a static state-feedback law
ut = Kxt, where K ∈p×n is the solution of a discrete
algebraic Riccati equation [30]. In this work, A and B are
unknown, so it shall be necessary to learn and control the
system, simultaneously. Though not necessarily optimal, we
will restrict our attention to static-gain policies of the form,
ut = Kxt + et, where et ∼ N (0,Σ) represent random
excitations for the purpose of learning. A policy comprises
K ∈p×n and Σ ∈ Sp++ (i.e., symmetric positive definite
of dimension p), and is denoted K = {K,Σ}. Despite the
assumption of linear dynamics and observable states, this
problem has attracted considerable recent attention, cf. e.g.
[27], [28], [29].

As the dynamics are unknown, all knowledge of the
system comes from measured trajectories of (1). Given
observations D = {xt, ut}Nt=1 of (1), we assume there exists
a mapping to a model M(D) = {Â, B̂,D}. Here Â and
B̂ denote point estimates of A and B, respectively, and D
quantifies the uncertainty associated with these estimates.
Specifically, with the estimation error defined as

X(D) :=

[
(Â−A)>

(B̂ −B)>

]
(2)

D(D) is such that with probability 1− δ we have

X(D)>D(D)X(D) � I. (3)

Explicit dependence of X and D on D is dropped from the
notation when there is no ambiguity. Details on the mapping
from data D to models M are provided in §II-B.

Given this set-up, this paper seeks to solve two control
problems. The first is a robust control problem: given data
D0 from (1), find a policy K that minimizes the worst-case
cost with probability 1− δ. Denoting this worst-case cost by

J(K,M) := max
A,B

lim
T→∞

1

T
E[
∑T

t=0
x>t Qxt + u>t Rut] (4)

s.t. xt+1 = Axt +But + wt, ut = Kxt + et, X
>DX � I,

the robust control problem can be expressed as

min
K

J(K,M(D0)). (5)

The second is a robust dual control problem: given data
D0 from (1), collected during some arbitrary preliminary
experiment, design a policy Kdc such that, i) after letting
(1) evolve under Kdc for Tdc time steps and collecting
observations Ddc, the worst-case cost given by redesigning
a robust controller with the new model M(D0 ∪ Ddc) is
minimized, ii) subject to the constraint that the worst-case
cost of Kdc, given the model M(D0), must not exceed a
user-specified ‘exploration budget’, Jexp. This problem can
be expressed precisely as:

min
Kdc,K

E J(K,M(D0 ∪ Ddc)) (6)

s.t. J(Kdc,M(D0)) ≤ Jexp, x̄t+1 = Ax̄t +Būt + wt,

ūt = Kdcx̄t + et, et ∼ N (0,Σdc) ,Ddc = {x̄t, ūt}Tdc
t=1.

The expectation in the objective of (6) is w.r.t. the distribution
over Ddc which is a random variable.

B. Uncertainty quantification

The problem formulated in §II-A assumes the existence
of a mapping from data D to a modelM(D), complete with
bounds on the spectral properties of the estimation error, cf.
(3). In this section we provide one concrete suggestion for
such a mapping, which makes use of the following result
from [29].

Proposition 1. Assume we have N independent samples
(y(l), x(l), u(l)) such that y(l) = Ax(l) +Bu(l) +w(l), where
w(l) are i.i.d. with N

(
0, σ2

wI
)

and are independent from x(l)

and u(l). Also, let us assume that N ≥ n+ p. Let Â and B̂
denote the least squares estimates given by

(Â, B̂) = arg min
A,B

N∑
k=1

∥∥∥y(l) −Ax(l) −Bu(l)
∥∥∥2

2
.

With estimation error X defined as in (2), with probability
1− δ, we have that

XX> � C̄(n, p, δ)

(
N∑
l=1

[
x(l)

u(l)

] [
x(l)

u(l)

]>)−1

︸ ︷︷ ︸
D−1

, (7)



where C̄(n, p, δ) = σ2
w(
√
n+ p+

√
n+

√
2 log 1

δ ])2.

Given Proposition 1, a suitable model M(D) =
{Â, B̂,D} is given by taking {Â, B̂} as the least squares
estimates, and D as defined in (7), as two applications of
the Schur complement yields

XX> � D−1 ⇐⇒
[
I X>

X D−1

]
� 0 ⇐⇒ X>DX � I.

To apply Proposition 1, the data D must be comprised
of independent samples {y(l), x(l), u(l)}Nl=1. One way to
satisfy this independence assumption is to collect data in
the form of rollouts: one can evolve system (1) forward for
Tr, initialized at x(l)

0 = 0 and excited by arbitrary inputs
u

(l)
t , and then take the final state-transition as the observed

data, i.e., y(l) = x
(l)
Tr

, x(l) = x
(l)
Tr−1, u(l) = u

(l)
Tr−1. If, as is

the case in the dual control setting, only a single trajectory
can be observed, rather than multiple independent rollouts,
then one can subsample the data; i.e., take every Tss-th
data point, with Tss sufficiently large such that the samples
y(l) = xTssl, x

(l) = xTssl−1, u(l) = uTssl−1, are approximately
independent.

The above strategies are conservative, in that they do not
make use of all the available data. Alternative strategies for
bounding the spectral error that may reduce conservatism
(e.g. bootstrap methods [31]) can be found in [29], [32]. The
focus of this paper is on control synthesis given a mapping
from data to models with bounds on uncertainty; the user
is free to employ models with tighter bounds on estimation
error if preferred.

III. DESIGNING A ROBUST CONTROLLER

In this section we present a solution to the robust control
problem specified in (5). For this problem, exploration is
unnecessary, and so we consider policies of the form ut =
Kxt. The closed-loop system can be expressed as

xt+1 = (A+BK)xt + wt, yt =

[
Q

1
2

R
1
2K

]
xt. (8a)

The H2 norm of the system can be computed as:

min
W

tr
[

Q
1
2

R
1
2K

]
W

[
Q

1
2

R
1
2K

]>
(9a)

s.t. (A+BK)W (A+BK)> −W + σ2
wI � 0, (9b)

where W is the controllability Gramian.
As the system dynamics (i.e. A and B) and the controller

K are unknown, we will circumvent the non-convexity in
(9) via the usual change of variables. The cost function (9a)
is given by tr Y subject to the LMI

S1(W,Y,Z) :=

 Y
Q

1
2W

R
1
2Z>

WQ
1
2 ZR

1
2 W

 � 0,

with the change of variables Z = WK>. After applying
the Schur complement, the Lyapunov condition (9b) can be

written as[
W W (A+BK)>

(A+BK)W W − σ2
wI

]
� 0. (10)

The real system dynamics (A,B) are unknown. In their
place, we have an approximate modelM(D0) = {Â, B̂,D0}
obtained from data D0, cf. §II-B. We can rewrite the elements
in the LMI (10) containing A and B as:

W (A+BK)> = WÂ> + ZB̂>︸ ︷︷ ︸
F

+ [−W − Z]︸ ︷︷ ︸
G

X, (11)

where X is defined in (2). Now, we can rewrite (10) as[
H F +GX

(F +GX)> C

]
� 0, (12)

where H = W and C = W − σ2
wI . We require (12) to hold

for the ’worst-case’ (A,B) (in the confidence region); as a
sufficient condition, we enforce that (12) holds for all (A,B)
with the 1−δ confidence region given by (3). To ensure this,
we will use the following theorem from [33]:

Theorem 1 ([33]). The data matrices (A,B, C,P,F ,G,H)
satisfy the robust fractional quadratic matrix inequality[

H F + GX
(F + GX)> C +X>B + B>X +X>AX

]
� 0,

for all X with I −X>PX � 0, if and only if there is t ≥ 0
such that H F G

F> C B>
G> B A

− t
 0 0 0

0 I 0
0 0 −P

 � 0. (13)

By Theorem 1, (12) holds for all X>DX � I iff

S2(t, Z,W,D, Â, B̂) :=

 H F G
F> C − tI 0
G> 0 tD

 � 0,

(14)
which is simply (13) with the substitutions A,B = 0, C = C
and H = H as defined in (12), F = F and G = G as defined
in (11), and P = D. We can then write the robust control
problem (5) as the following semidefinite program

min
t,Z,Y,W

tr Y s.t. S1(W,Y,Z) � 0, t ≥ 0,

S2(t, Z,W,D0, Â, B̂) � 0.
(15)

IV. DESIGNING A DUAL CONTROLLER

In this section we present an approximate solution to the
robust dual control (cf. [1], [4]) problem specified in (6).

A. Robust exploration

In this subsection, we present a convex formulation of
the search for policies K = {K,Σ} of the form ut =
Kxt+et, where K is robustly stabilizing and et ∼ N (0,Σ).
The developments below closely follow those of §III. For
such policies, the Lyapunov condition for the controllability
Gramian W becomes

(A+BK)W (A+BK)>−W +BΣB>+ σ2
wI � 0. (16)



By two applications of the Schur complement, (16) becomes W 0 W (A+BK)>

0 Σ ΣB>

(A+BK)W BΣ W − σ2
wI

 � 0. (17)

Now, similarly to (12) we can write (17) as[
Hdc Fdc +GdcX

(Fdc +GdcX)> Cdc

]
� 0, (18)

with Hdc = blkdiag(W,Σ), where blkdiag is the block-
diagonal operator, Cdc = W − σ2

wI , Z = WK>,

Fdc =

[
WÂ> + ZB̂>

ΣB̂>

]
, Gdc =

[
−W −Z

0 −Σ

]
.

Again, by Theorem 1, (18) holds for all X>DX � I iff

Sdc(t, Z,W,Σ, D, Â, B̂) :=

 Hdc Fdc Gdc

F>dc Cdc − tI 0
G>dc 0 tD

 � 0,

(19)
which is (13) with the substitutions A,B = 0, C = Cdc and
H = Hdc, F = Fdc and G = Gdc, and P = D.

B. Updating the model after dual control

To recapitulate, our objective is to search for a robustly
stabilizing policy Kdc so that the cost of a robust controller
redesigned with data D0 ∪ Ddc is minimized, where Ddc is
the data observed while Kdc is applied. To achieve this, we
need to approximate the model M(D0 ∪ Ddc) as a function
of Kdc = {Kdc,Σ}.

Recall, cf. (7), that the uncertainty D(D0 ∪ Ddc) is given
by

D(D0) +
1

C̄

∑N

l=1

[
x̄l

ūl

] [
x̄l

ūl

]>
(20)

where N = Tdc/Tss is the number of approximately un-
correlated samples obtained by taking every Tss-th sample
from {x̄tūt}Tdc

t=1, the trajectory of (1) evolving under Kdc.
For sufficiently large N we can approximate the empirical
covariance by its stationary distribution,∑N

l=1

[
x̄l

ūl

] [
x̄l

ūl

]>
≈ N

[
Σxx ΣxxK

>
dc

KdcΣxx KdcΣxxK
>
dc + Σ

]
(21)

where Σxx = E[x̄x̄>], i.e., the stationary state-covariance.
As the true values of (A,B) are unknown, we cannot
compute Σxx. We choose to approximate Σxx with the worst-
case state-covariance, i.e., W that satisfies (19). Then we can
define

Ddc := D0 +
Tdc

Tss

1

C̄

[
Wdc Zdc

Z>dc Z>dcW
−1
dc Zdc + Σ

]
︸ ︷︷ ︸

D̃dc

, (22)

where Zdc = WdcK
>
dc , as the ‘worst-case’ uncertainty result-

ing from application of Kdc for Tdc timesteps.
Ideally, we would also take into account the effect of the

data Ddc on our point estimates Â, B̂, for the purpose of
dual-control synthesis. To preserve convexity, we will instead

use the initial point estimates based on D0. To summarize,
our updated model after running the dual controller can be
approximated by M(D0 ∪ Ddc) ≈ {Â(D0), B̂(D0), Ddc}.
C. Convex relaxation

During synthesis of Kdc, the search for the redesigned
policy K = Z>W−1 is constrained by, cf. (14),

S2(t, Z,W,D0 +
Tdc

Tss
D̃dc, Â, B̂) � 0. (23)

For fixed t, this is an LMI in Ddc; however, Ddc is a nonlinear
function of Zdc and Wdc, cf. (22). In what follows, we
derive an affine approximation of Ddc. As increasing Ddc
enlarges the feasible set defined by (23), it is desirable for
this approximation to lower bound Ddc. We make use of the
following result:

Lemma 2. The inequality U>M−1U � U>V + V >U −
U>MU holds for every M � 0, U and V .

Proof. We have for every M � 0 that U>M−1U −U>V −
V >U + U>MU = ‖U −MV ‖2M−1 � 0.

By choosing M = Wdc and U =
[
Wdc Zdc

]
we can

lower bound the nonlinear term in (23) as follows:[
Wdc Zdc

Z>dc Z>dcW
−1
dc Zdc

]
≥
[
Wdc

Z>dc

]
V +V >

[
Wdc

Z>dc

]>
− V >WdcV.

This gives an affine lower bound on D̃dc for fixed V . The
bound is tight when U = MV , and so the optimal choice
is V = W−1

dc

[
Wdc Zdc

]
=
[
I K>dc

]
. As Kdc is un-

known, we instead choose the robust controller for the nom-
inal model M(D0), i.e., K0 = arg minK J(K,M(D0)).
With this choice, the bound is tight for Kdc = K0.

We are now in a position to present an approximate convex
solution to (6). In what follows, M(D0) = {Â, B̂,D0}.
Consider the following program:

min
tdc,Zdc,Wdc,Σ
t,Z,W,Y,D̄dc

tr Y (24a)

s.t. t ≥ 0, tdc ≥ 0, S1(W,Y,Z) � 0, (24b)

S2(t, Z,W,D0 +
Tdc

Tss
D̄dc, Â, B̂) � 0, (24c)

tr Ydc ≤ Jexp, S1(Wdc, Ydc, Zdc) � 0, (24d)

Sdc(tdc, Zdc,Wdc,Σ, D0, Â, B̂) � 0, (24e)

D̄dc�
1

C̄

[
Wdc Zdc

Z>dc Z>dcK
>
0 +K0Zdc−K0WdcK

>
0 +Σ

]
(24f)

For fixed t, (24f) is an SDP. To circumvent the non-convexity
of the product between t and D̄dc in (24c) we can grid over
the scalar variable t. The computational complexity scales
linearly in the number of grid points.

To summarize, in (24) we approximated the robust dual
control problem given by (6) as follows: i) we approximated
Ddc by its stationary distribution, cf. (21), and later approxi-
mated Σxx with the worst-case state-covariance, cf. (22); ii)



we derived an affine approximation of Ddc (c.f. Lemma 2);
iii) we did not consider the effect of the data Ddc on the
point estimates Â, B̂, in order to preserve convexity.

V. NUMERICAL EXPERIMENTS

We now illustrate our results on robust and dual control
with numerical experiments in MATLAB using YALMIP
for formulation [34] with MOSEK [35] as the solver. We
compared our robust controller to the robust controller de-
signed in [29]. We also compared our dual controller with a
greedy random exploration strategy. For these comparisons,
we randomly generated 100 systems of the form (1). Each
entry in A ∈3×3 and B ∈3×2 was sampled from N (0, 1).
A was scaled so as to have spectral radius of 1.05, and
controllability of each system was verified. The methods
were also compared on the particular system

A =

 1.1 0.5 0
0 0.9 0.2
0 −0.2 0.8

 , B =

 0 1
0.1 0
0 2

 .
In both cases σw = 0.5 and the user defined matrices for
calculating the cost were Q = I and R = diag(10, 1).

A. Comparison of robust controller with [29]

For each trial, D0 was constructed by running N = 500
rollouts, each of length Tr = 6. During each rollout, white
noise with unit variance σu was used as the input u. Given
D0, and δ = 0.05, two robust controllers were synthesized
using: i) the method proposed in §III (rc-prop); ii) the synthe-
sis method proposed in [29] with the confidence intervals εA
and εB taken as the square root of the maximum eigenvalues
of diagonal sub-blocks (of appropriate dimension) of D0 (rc-
sls). This process was repeated for 100 randomly generated
systems, cf. Figure 1, and for 100 Monte Carlo trials with
the particular system above, cf. Figure 2. The red line in
the middle of each box denotes the median. The tops and
bottoms of each box are the 25th and 75th percentiles, and
observations beyond 1.5 times the interquartile range are
marked as outliers by red crosses. We evaluate performance
via two metrics: i) the infinite horizon LQ-cost when the
controller is applied to the true system, ii) the theoretical
worst-case cost given D0, i.e., J(K,M(D0)) in (4). The
proposed controller demonstrates superior performance in all
cases. Notice that rc-sls and rc-prop are synthesized using the
same modelM(D0); however, rc-prop takes into account the
structure of D0, while rc-sls makes use of the spectral norm
only.

B. Comparison of dual controller with greedy exploration

For each trial, the initial dataset D0 is comprised of
N = 500 rollouts of length T = 6, with white noise
excitation u of variance σu = 1. Given D0, and δ =
0.05, our objective is to solve the dual control problem
(6) with Tdc = 1000. We compare the following methods:
i) dc: the dual control strategy proposed in §IV. For the
grid we used 20 points which are equally spaced between
0.05 and 2tnom, where tnom is attained by solving (15)

100 101

100

101

rc-prop

rc
-s
ls

100 101

100

101

rc-prop

rc
-s
ls

Fig. 1: Comparison of performance of the proposed robust controller and
the robust controller in [29] on the randomly generated systems using: i)
true system dynamics (left), ii) the worst-case cost (right).
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Fig. 2: Comparison of performance of the proposed robust controller and
the robust controller in [29] on the particular system using true system
dynamics (left), and the worst-case cost (right).

with D0; ii) exp: a greedy exploration strategy with policy
ut = K0 + et, where K0 = arg minK J({K, 0},M(D0))
and et ∼ N (0,Σe) with Σe tuned so that the theoretical
worst-case cost J({K0,Σe},M(D0)) is equal to the ex-
ploration budget Jexp. The exploration budget was set to
1.2J({K0, 0},M(D0)), though the results are qualitatively
insensitive to the exploration budget. The two exploration
methods are evaluated via the following metrics, cf. Figure
3. First, we compare the worst-case cost achieved by the
redesigned robust controllers, after exploration, using the
theoretical worst-case uncertainty reduction, cf. (22). From
Figure 3, we see that the proposed method results in sig-
nificantly lower cost after redesign, compared to the greedy
strategy. Next, we compare the empirical cost of exploration
when the exploration policies are applied to the true system.
Interestingly, though both policies are tuned to achieve the
same worst-case exploration cost (given by the budget) the
proposed approach delivers significantly lower exploration
cost on the true system. Next, we apply the redesigned
controllers to the true system, and observe comparable cost
for each. Finally, we investigate the nature of the uncertainty
reduction achieved by each exploration policy. In Figure 3
we plot ‖D−1‖2 for each method, where D denotes the
‘worst-case uncertainty matrix’ given in (22). This is a scalar
measure of the magnitude of uncertainty. Notice that the
absolute uncertainty achieved by the proposed method is
larger than that achieved by greedy strategy; however, the
performance of the re-designed controller is much lower.
This suggests that the proposed method is reducing the un-
certainty in a structured way, targeting uncertainty reduction
in the parameters that ‘matter most for control’.
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Fig. 3: From left to right: Comparison of i) worst-case cost of controller
after redesign using theoretical exploration, ii) empirical cost of exploration,
iii) empirical cost of controller on true system after redesign, iv) 2-norm of
worst-case inverse uncertainty matrices, i.e., ‖D−1‖2

A standard laptop computer runs the simulations. Finding
the robust controller which involves solving the SDP prob-
lem takes about 0.05 s, and finding the approximate dual
controller for 20 grid points takes about 2.5 s.

VI. CONCLUSION

In this paper, we considered a design of robust LQ
controllers with unknown dynamics. First, we designed a
nominal robust controller using initial data uncertainty ob-
tained from Proposition 1. Next, we designed a robust dual
controller. The objective of the robust dual controller is
to minimize the worst-case cost attained by a new robust
controller, synthesized with the reduced model uncertainty,
subject to constraints on the exploration cost. Numerical
simulations show that our nominal controller has lower
worst-case cost than the robust controller proposed in [29]
for both true system and the worst-case cost. This implies
that our robust controller is less conservative. Moreover, the
worst-case cost of the proposed dual controller was reduced
in comparison to a greedy random exploration strategy.
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