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Abstract—Equation error, a.k.a. one-step-ahead prediction er-
ror, is a common quality-of-fit metric in dynamical system
identification and learning. In this paper, we use Lagrangian
relaxation to construct a convex upper bound on equation error
that can be optimized over a convex set of nonlinear models that
are guaranteed to be contracting, a strong form of nonlinear
stability. We provide theoretical results on the tightness of the
relaxation, and show that the method compares favourably to
established methods on a variety of case studies.

Index Terms—Identification, stability of nonlinear systems.

I. INTRODUCTION

SYSTEM identification, a.k.a. learning dynamical systems
from data, is a task of central importance in many areas of

science and engineering. Major challenges include capturing
long-term dynamic interactions, model stability, and non-
convexity of optimization criteria [1], [2].

This paper concerns identification of stable discrete-time
nonlinear state-space models of the form

xt = aθ(xt−1, wt), yt = gθ(xt, wt). (1)

Here, xt is the internal state, and wt, yt denote the input
and output, respectively. aθ and gθ are finitely parametrized
by θ. State-space models offer a flexible description of dy-
namic behavior; special cases include autoregressive models,
Wiener/Hammerstein models, and recurrent neural networks.

Models that lack stability can achieve good fit to training
data, and yet behave unpredictably for previously unseen
inputs. However, verifying model stability, let alone enforc-
ing stability a priori, is a formidable challenge [1]. Similar
problems have been encountered in the machine learning
community (e.g. [2]), and in model reduction, where the data
come from “snapshots” of a more complex model (e.g. [3]).

To quantify the quality-of-fit of the identified model, we
will use the equation error:

Jee(θ) :=

N∑
t=2

|x̃t − aθ(x̃t−1, w̃t)|2 +

N∑
t=1

|ỹt − gθ(x̃t, w̃t)|2,

a.k.a. one-step prediction error, where {w̃}Nt=1 and {ỹt}Nt=1

denote measured inputs and outputs, respectively, from some
dynamical system, and {x̃t}Nt=1 denotes estimates of the
internal states. Here wt is a “generalized input” in the sense
that it can be given by any function of the previous measurable
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“physical” inputs, up until time t, e.g., w̃t = fw(ũt, . . . , ũt−d).
Equation error Jee is a metric frequently used in identification
problems, arising in scenarios such as:

Scenario one: minimization of equation error is a subprob-
lem in many common approaches to system identification, e.g.,
subspace identification [4] where x̃t are estimated using matrix
factorization, or expectation maximization (EM) for maximum
likelihood identification, where x̃t denote samples from the
joint smoothing distribution, c.f., [5].

Scenario two: equation error may be used as a surrogate
for simulation error, i.e. the long-term prediction accuracy:

Jse(θ) :=
∑N

t=1
|ỹt − gθ(xt, w̃t)|2,

a.k.a. output error, where xt = aθ(xt−1, w̃t), x1 = x̃1. Direct
optimization of Jse is often highly challenging. By contrast
Jee is a convex function of θ when aθ and gθ are linearly
parametrized. If desired, the minimizer of Jee can then be used
to initialize local optimization (e.g. via a gradient descent or
Newton’s method) of Jse.

The problem that we address in this paper can be sum-
marized as follows: given training data {ũt, x̃t, ỹt}Nt=1, find a
model of the form (1) that (i) minimizes equation error Jee,
and (ii) is stable, in the sense defined in §II. For non-trivial
model structures, characterising the subset of stable models in
a computationally tractable way is the main difficulty.

The problem of model stability in identification of linear
time invariant (LTI) systems has attracted considerable at-
tention. In subspace identification a number of strategies to
guarantee stability have been proposed, including: augmenting
the extended observability matrix [6], regularization [7], eigen-
value/pole location constraints [8], [9], and iterative constraint
generation approaches [10]. In all of these methods, there is
a trade-off between (i) minimizing the desired cost-function,
Jee, at the expense of conservatism in the model class, and (ii)
optimizing over all stable models, at the expense of distorting
the cost-function. There are fewer results for guaranteeing
stability of nonlinear models. In [11] results were given for
reduction of linear models in feedback with certain classes of
nonlinear dynamic models. The present paper builds upon the
work of [12], [13], which proposed a convex parametrization
of state-space models with guaranteed incremental stability
and contraction properties, as well as a family of convex upper
bounds on simulation error via Lagrangian relaxation [14].

In this paper, we investigate the use of Lagrangian relaxation
(LR) to construct convex upper bounds on equation error that
can be optimized over convex parametrizations of stable non-
linear models. We refer to this construction as LR of equation



error (LREE). Unlike [13], this does not provide a true bound
on simulation error, but it offers significant advantages in terms
of computation, and performs better empirically in terms of
simulation error on some case studies.

The notation we use is as follows: the cone of real, sym-
metric nonnegative (positive) definite matrices is denoted Sn+
(Sn++). A � B (A � B) denotes A−B ∈ Sn+ (A−B ∈ Sn++).
The n × n identity matrix is denoted In. The transpose of a
matrix a is denoted a′, and |a|2Q is shorthand for a′Qa. For
a polynomial p, p ∈ sos denotes membership in the cone of
sum-of-squares polynomials [15].

II. PARAMETRIZATIONS OF STABLE MODELS

In this paper, we will impose the following strong notion
of stability on the identified models:

Definition 1 (Global incremental `2 stability). The model (1)
is said to be stable if the sequence {x̄t − x̂t}∞t=1 is square
summable for every two solutions (w̄, x̄) and (ŵ, x̂) of (1),
subject to the same input w̄ = ŵ.

The main obstacle to ensuring stability of an identified
model is the nonconvexity of the simultaneous search for
model parameters and a certificate of stability (e.g., Lyapunov
function). To circumvent this nonconvexity, we will work with
the following class of implicit state-space models:

eθ(xt+1, ut+1) = fθ(xt, ut), yt = gθ(xt, ut), (2)

where eθ : Rnx×nu 7→ Rnx , fθ : Rnx×nu 7→ Rnx and
gθ : Rnx×nu 7→ Rny are multivariate polynomials or trigono-
metric polynomials, linearly parametrized by unknown model
parameters θ ∈ Rnθ . Explicit dependence on θ is henceforth
dropped for brevity. The model (2) is a generalization of
the implicit models introduced in [12], which considered the
special case of e(x, u) = e(x). We shall enforce that e(·, u) is
a bijection for all u, i.e., for all u ∈ Rnu and b ∈ Rnx there
exists a solution s ∈ Rnx to e(s, u) = b. This implies that (2)
is equivalent to (1) with a(xt−1, wt) = e−1(f(xt−1, ut−1), ut)
and wt = (ut, ut−1).

The convex model sets in [13] are based on contraction
analysis [16] and differential L2 gain [17], which utilize an
augmented dynamical system comprising (2) and the dif-
ferential dynamics E(xt+1, ut+1)δt+1 = F (xt, ut)δt, where
E(x, u) = ∂e(x,u)

∂x and F (x, u) = ∂f(x,u)
∂x . Consider the dif-

ferential dissipation inequality Vt+1(xt+1, δt+1)−Vt(xt, δt) ≤
−µ|δt|2, where V : Z × Rnx×nx 7→ R is a positive definite
differential storage function. It can be shown that if the
dissipation inequality holds for all solutions of (2) and the
differential dynamics, then the model (2) is stable, c.f., [13,
Thm 5]. [13, Thm 5] concerns a time-invariant V , however,
the proof is identical for time-varying Vt. With the metric
Vt(xt, δt) = |E(xt, ut)δt|2P−1 , for P ∈ Snx++, the family of
linear matrix inequalities (LMIs)

M(θ, P, x, u) := (3)[
E(x, u) + E(x, u)′ − P − µI F (x, u)′

F (x, u) P

]
� 0,

implies the dissipation inequality and, therefore, model sta-
bility, c.f. [13, §V]. Furthermore, E(x, u) + E(x, u)′ � P +

µI, ∀x, u ensures that the model is well-posed (i.e. e(·, ·) is
a bijection), c.f. [13, Thm 1] To ensure that (3) holds for all
x, u, one can constrain the polynomial v′M(θ, P, x, u)v to be
sum-of-squares (SOS) [15], where v ∈ R2nx are indeterminate
variables. This leads to the convex set of stable models:

Θ := {θ : ∃P ∈ Snx++ s.t. v′M(θ, P, x, u)v ∈ sos}. (4)

Note that the model e(x, u) = x, f(x, u) = 0 and P = I leads
to M = I , which always satisfies the conditions in (4) and
hence the optimization problems we consider in this paper are
never infeasible.

III. LAGRANGIAN RELAXATION OF EQUATION ERROR

Recall the problem statement from §I, which can be ex-
pressed as the optimization problem minθ∈Θ Jee(θ), where Θ
is the convex parametrization of stable models (4). For ease
of exposition, consider the simplified problem

min
θ
|x̃t − a(x̃t−1, w̃t)|2, s.t. θ ∈ Θ, (5)

i.e., minimization of equation error for a single data point,
where a(xt, wt) = e−1(f(xt−1, ut−1), ut). The problem

min
θ,xt

|x̃t − xt|2, s.t. e(xt, ũt) = f(x̃t−1, ũt−1), θ ∈ Θ (6)

is equivalent to (5), as it has the same objective and feasible
set. For clarity, we will refer to εt := e(x̃t, ũt)−f(x̃t−1, ũt−1)
as implicit equation error (at time t), to distinguish it from
Jee, which will henceforth refer to as explicit equation error.
Problem (6) is not jointly convex in θ and xt. In fact, by
making use of implicit models, it may appear as though we
have simply shifted the problem of nonconvexity from the
model stability constraint to the cost function. In this section,
we develop a convex approximation to this nonconvex problem
based on Lagrangian relaxation (LR). To apply LR to (6) we
construct the function

Ĵt(θ) := sup
xt

{|x̃t−xt|2−2λt(xt)
′ (e(xt, ũt)− f(x̃t−1, ũt−1))}

(7)
where λt(xt) may be interpreted as a Lagrangian multiplier.
For arbitrary λt(xt), the function Ĵt(θ) has two key properties
[13]: (i) it is convex in θ, as it is the supremum of an infinite
family of convex functions, (ii) it is an upper bound for
objective in (6). Problem (6) may then be approximated by
the convex program minθ∈Θ Ĵt(θ). A convex upper bound for
Jee can be constructed by summing the bounds for (6), i.e.,

Ĵ(θ) :=
∑N

t=2
Ĵt(θ) ≥ Jee. (8)

We refer to Ĵ(θ) as LR of equation error (LREE). The simulta-
neous search for θ and λt(xt) is not jointly convex; therefore,
λt(xt) must be specified in advance. For the rest of this paper,
we will make use of the multiplier λt(xt) = xt − x̃t. This
choice of multiplier simplifies computation of the bound, c.f.
(12), and ensures perfect model recovery when x̃ constitutes
noiseless states from a true model in Θ. It is possible to
iteratively optimize λt(xt) given some ‘current best guess’ of
the model, c.f. [18, §4.4] where this is applied for simulation
error minimization.

Though convex, minimization of Ĵ(θ) is non-trivial, as eval-
uating (7) requires the supremum of a multivariate polynomial.



A. Approximation via Sum-of-Squares Programming

In this section we propose three approximations of the prob-
lem minθ∈Θ Ĵ(θ) based on sum-of-squares (SOS) program-
ming [15], each of which is in a form that can implemented
in a straightforward way using SOS parsers such as [22].

Firstly, we introduce the slack variable st and a SOS
constraint to ensure st ≥ Ĵt:

st − |x̃t − xt|2 + 2λt(xt)
′ (e(xt, ũt)− f(x̃t−1, ũt−1)) ∈ sos,

(9)
for all t = 2, . . . , N . Combining this with the stability
constraint (4) gives our first and most precise SOS upper
bound for minθ∈Θ Jee(θ):

SOS Program 1:

min
θ,{st}Nt=2

∑N

t=2
st, s.t. θ ∈ Θ, (9). (10)

A simpler approximation can be obtained by replacing each
SOS constraint (9) with an LMI constraint by linearizing the
nonlinear term e(xt, ũt) at x̃t, i.e. using the constraint

e(x̃t, ũt) + E(x̃t, ũt)(xt − x̃t) ≈ f(x̃t−1, ũt−1), (11)

for which the supremum over xt can be explicitly calculated:

st ≥ sup
xt

|x̃t − xt|2 − 2λt(xt)
′ (E(x̃t, ũt)(xt − x̃t) + εt) ,

= ε′t(E(x̃t, ũt) + E(x̃t, ũt)
′ − I)−1εt =: Ĵ`t (θ), (12)

for all t = 2, . . . , N . Note that each constraint (12) can be
represented as an LMI in st, θ via Schur complement. This
leads to the second approximation:

SOS Program 2:

min
θ,{st}Nt=2

∑N

t=2
st, s.t. θ ∈ Θ, (12). (13)

We refer to (13) as minimization of ‘linearized LREE’ and
denote Ĵ`(θ) :=

∑N
t=1 Ĵ

`
t (θ). The linearization (11) means

that (13) does not minimize a true upper bound on Ĵ(θ),
rather an approximation, but in the authors experience both
(10) and (13) have been observed to give very similar bounds,
and consequently, very similar models. A disadvantage of (10)
and (13) is that the number of constraints grows linearly with
the number of data points, N , used for training.

The third approximation provides a true upper bound on
Ĵ(θ) and results in a SOS program that does not grow
in complexity as a function of N , though it can be more
conservative than the first approximation. The construction is
based on an empirical moments representation, similar to that
developed in [19] for Jse. The idea is as follows: instead of
introducing a slack variable st for each data point, as in (9),
we replace st with a function r such that

r([x̂t, x̂t−1, ût, ût−1])− |x̂t − xt|2 (14)
+2λt(xt)

′ (e(xt, ût)− f(x̂t−1, ût−1)) ≥ 0,

for all possible problem data x̂t, x̂t−1, ût, ût−1 and all xt.
The function r is chosen to be a polynomial of degree
d, such that nonnegativity in (14) can be enforced via
SOS. When (14) holds, r([x̃t, x̃t−1, ũt, ũt−1]) ≥ Ĵt and so

∑N
t=2r([x̃t, x̃t−1, ũt, ũt−1]) ≥

∑N
t=2Ĵt = Ĵ . We can then

minimize an upper bound for minθ∈Θ Ĵ(θ) by the following:
SOS Program 3:

min
θr,θ

∑N

t=2
r([x̃t, x̃t−1, ũt, ũt−1]), s.t. θ ∈ Θ, (14), (15)

where θr parametrizes r. Problem (15) has just two SOS
constraints, θ ∈ Θ and (14), regardless of N . For any given
data points [x̃t, x̃t−1, ũt, ũt−1], r in (14) is an approximation
of st in (9). The quality of the approximation is improved
by increasing degree d of r, at the expense of increased
computational cost. Before proceeding, we note that SOS pro-
gramming is powerful, but can be computationally expensive:
e.g., for an n = nx + nu-variate polynomial of degree 2d,
the dimension of the Gram matrix is

(
n+d
d

)
, and complexity

is quartic (worst-case) in this dimension. As such, though
constant in N , complexity grows quickly with model size.

To conclude this section we note that in the special case of
LTI models, i.e. Ext+1 = Fxt +Kut and yt = Cxt +Dut,
from which A = E−1F and B = E−1K can be recovered,
several of the approximations become exact. First, there is no
conservatism due to the stability constraint, i.e., Θ is a convex
parametrization of all stable linear systems. Second, the LR Ĵt
in (7) and the linearized LR Ĵ`t in (12) are equivalent, i.e., LR
can be applied directly. Similarly, an exact empirical moments
representation of Ĵ exists with quadratic r. One can enforce
(14) exactly as an LMI, and (15) can be solved as an SDP. No
approximations based on SOS or linearization are necessary.

IV. QUALITY OF BOUND ON EQUATION ERROR

In §III we introduced a convex bound on explicit equation
error, Jee. In this section, we provide results on the quality
of this bound. First, consider the case in which problem data
{ũt, x̃t}Nt=1 represents noiseless inputs and states from some
true model θ∗ ∈ Θ, such that Jee(θ∗) = 0. From (12) it
is apparent that Ĵ`t (θ∗) = 0 ∀t with noiseless data, i.e.,
the bound Ĵ` is tight to Jee at the true model parameters,
and SOS program 2 gives perfect model recovery. Next, we
turn our attention to identification with noisy problem data.
Consider minimization of explicit equation error Jee, under
the following assumptions:
1. The model belongs to (1) with a(x,w) = aφ linearly

parametrized by φ, to distinguish from the implicit model
(2) which is linearly parametrized by θ,

2. The global minimizer φ∗ := arg minφ Jee(φ) gives sta-
ble aφ∗ that is contracting w.r.t. the identity metric, i.e.
A′φ∗Aφ∗ � −I ∀x,w, where Aφ∗ = ∇xaφ∗ .

Under these assumptions, SOS program 2 returns the same
solution as unconstrained least squares, minφ Jee(φ).

Proposition 1. Consider models of the form (2) with
e(x,w) = Ex for E ∈ Rnx×nx and fθ(x,w), parametrized
by θ, such that fθ(x,w) = aφ∗(x,w) for some value
of θ. Then, under assumptions 1 and 2, (E∗, θ∗) =
arg minE,θ Ĵ

`(E, θ) s.t. (E, θ) ∈ Θ, i.e., SOS program 2, c.f.
(13), are such that (E∗)−1fθ∗(x,w) = aφ∗(x,w).

Proof. For e(x,w) = Ex, the linearized constraint (11) is
exact, and so linearized LREE Ĵ` in (13) is equivalent to



Fig. 1: Bias in stable identification for scalar linear systems, c.f. . â denotes
the pole given by minimization of (19) (implicit EE) or (13) (LREE). a∗
denotes the true system pole in (17). Signal-to-noise ratio (SNR) = z/σ.

‘direct’ LREE. Substituting E = I and f = aφ∗ into (7)
gives Ĵ` = Jee, i.e., our convex bound is tight at φ∗.

Note that Assumption 2 will not hold for unbounded func-
tions aφ, such as polynomials (except in the linear case). The
assumption may, however, hold for bounded rational functions
and trigonometric polynomials.

Next, we elucidate the advantages of LREE in §III com-
pared to the simpler convex program

min
θ∈Θ

∑N

t=2
|e(x̃t, ũt)− f(x̃t−1, ũt−1)|2, (16)

i.e., minimization of implicit equation error. We study the
scalar linear case, and prove that LREE avoids a bias intro-
duced by (16). Empirical evidence in §V demonstrates that
this improvement in performance carries over to the nonlinear
case. Consider the scalar linear output error model,

xt+1 = a∗xt + b∗ut, ut ∼ N (0, 1) , (17a)
x̃t = xt + vt, vt ∼ N (0, σ) . (17b)

Minimization of Jee for (17) is an example of Scenario 2, c.f.
§I, in which Jee is used as a proxy for Jse. In the limit as
N →∞ explicit equation error is given by∑N

t=2
|x̃t+1−ax̃t−bũt|2 = σ(1+a2)+z(a−a∗)2+(b−b∗)2,

(18)
where z = b∗/(1 − a2

∗). The global minimizer is given by
als = za∗/(σ+ z), bls = b∗. Approximating (minimization of)
(18) with (16) leads to:

Proposition 2. For the implicit dynamics ext+1 = fxt+kut,
in the limit N →∞ the cost in (16) is equivalent to(

σ(1 + a2) + z(a− a∗)2 + (b− b∗)2
)
/(1− a2)2, (19)

where a = f/e and b = k/e.

Alternatively, LREE as in (13) returns the same solution as
least squares, i.e. (als, bls), as a consequence of Proposition 1.
The global minimizer of (19) lacks a closed form expression
that offers any insight, so we plot the minimizer, as a function
of a∗, in Figure 1. It is apparent that LREE is significantly
more accurate, especially when |a∗| ≈ 1.

V. CASE STUDIES

In this section we examine the proposed method via a
number of case studies. Matlab code that generates these
results has been made available online [20].

Fig. 2: Computation time as a function of training data length for a nonlinear
identification problem, c.f., §V-A. LRSE is solved with the specialized
algorithm in [21], LREE denotes the implementation in (13), i.e. SOS
program 2 and LREE (empirical moments) denotes the empirical moments
implementation of linearized LREE., i.e. SOS program 3. The polynomial r
has degree 7, c.f., (15).

A. Comparison to relaxation of simulation error

In this section, we explore differences between LREE and
LR of simulation error (LRSE), c.f. [13, §V], [21], which
provides a convex upper bound on simulation error, Jse. More
precisely, we actually compare against LR of an approximation
of Jse called linearized simulation error, c.f. [13, §V]. As
discussed in §I, one of the motivations for minimization of Jee
is to provide a cheap, convex surrogate for Jse, i.e. Scenario
two. LRSE also provides a convex approximation (upper
bound) to Jse, although the construction requires computing
the supremum of a function w.r.t. x1:N ∈ RNnx . A naive
implementation of LRSE leads to an SDP with computational
complexity that scales as a cubic function of the number of
data points, N ; however, by carefully exploiting structure,
complexity can be reduced to O(N), c.f. [21]. In contrast,
LREE provides a convex approximation (upper bound) to
equation error. As shown in §III, its construction requires the
supremum over a single state, xt, to be computed N times,
c.f., (7). Consequently, a direct implementation of (10) or (13)
leads to convex programs that scale linearly with N , without
the use of custom solvers. Furthermore, unlike LRSE, LREE
admits an empirical moments representation (15), for which
complexity remains constant with N . An empirical comparison
of computation time is provided in Figure 2. All optimization
problems were formulated with Yalmip [22], and solved using
Mosek 8.1.0.37.

Next, we compare the quality of models identified with
LREE and LRSE. LREE approximates Jee, which is a function
of all state-estimates x̃1:N . LRSE approximates Jse, which
depends only on x̃1. As such, it is reasonable to expect that
LREE will be more sensitive than LRSE to the quality of x̃1:N .
In what follows, we investigate this sensitivity on numerical
examples. First, we consider identification of a simulated
mass-spring-damper, for which the spring has a nonlinear
force-displacement relationship. The system is excited by an
applied force (measured input), and the displacement of the
mass s is the measured output. We use two methods to obtain
x̃1:N . Figure 3(a) shows the results when x̃t ≈ [st, ṡt]

′, i.e.,
position and velocity (ṡ is approximated by applying a high-
pass filter to s). That is, we exploit a priori knowledge of
mechanical systems to construct high-quality state estimates.
In this case, LREE performs better than LRSE. Figure 3(b)
shows the results when x̃t ≈ [st, st−1]′, i.e., a truncated



(a) States from high-pass (HP) filter. (b) States from lagged outputs.

Fig. 3: Comparison of LREE and LRSE on a nonlinear mass-spring-damper.
LREE performs better when the state estimates are of high quality, as in (a).
The converse is true in (b), where states are arguably of lower quality.

(a) Normalized H∞ error. (b) Normalized H2 error.

Fig. 4: Comparison of: i) explicit equation error minimization (LS), LREE,
and LRSE for a closed-loop subspace identification problem.

history of outputs. In this case, where x̃ are of arguably lower
quality than before, the situation is reversed: LRSE performs
better than LREE. One cannot draw general conclusions from
a single experiment, but these results suggest that when you
have high-quality state estimates x̃1:N , equation error provides
a good measure of model fit, and so LREE performs well. The
converse is true when the state estimates are poor.

Next, we consider a problem that is ubiquitous in applica-
tions: identification of an LTI system while operating under
closed-loop control. It is well known that methods based
on equation error minimization, e.g. subspace identification,
produce biased estimates in this setting [23]. Our experimental
set-up is as follows: we randomly generate 30 stable LTI
systems (nx = 7) using Matlab’s drss. Each system is
simulated under closed-loop control, provided by a state-
feedback linear quadratic regulator. White noise (SNR 27dB)
is added to the output. State estimates x̃1:N are then produced
by a subspace algorithm [4]. We emphasize that our goal is not
to benchmark against state-of-the-art subspace algorithms, but
rather, compare LREE and LRSE in the challenging closed-
loop setting. The results are presented in Figure 4. It is
apparent that LRSE has superior performance over both least
squares and LREE.

In summary, LREE provides a computationally cheaper
alternative to LRSE, and may even give better models when
the state estimates x̃ are of ‘high quality’. Conversely, when
equation error is inappropriate due to poor-quality states or
closed-loop identification LRSE may still be preferred.

B. Liquid-saturated steam heat exchanger

In this study, we identify a system in which water is heated
by pressurized steam in a copper tube. The input ũt is the

Fig. 5: Performance of identified models on validation set for the heat
exchanger, c.f. §V-B. Despite simulating reliably for the first 1000 points,
cubic narx-s diverges after an additional 95 timesteps of simulation.

liquid flow rate, and the output ỹt is the outlet liquid tempera-
ture. For further details, and problem data, c.f. Dataset 97-002
in the DaISy database [24]. We use N = 1000 datapoints
for training, and the next 2000 datapoints in the sequence for
validation. For states, we take x̃t = [ỹt, ỹt−1, ỹt−2]′ ∈ R3.

We fit the following models: (i) LREE, as in SOS program 2
(13), (ii) LRSE, as in [21], (iii) iEE-s, using implicit EE
(16), and (iv) iEE, using implicit EE without the stability
constraint (but with a well-posedness constraint). All models
use e(xt) = f(xt−1, ut, ut−1). We also fit (using the Matlab
System Identification Toolbox) nonlinear ARX models yt =
fnarx(ỹt−1, ỹt−2, ỹt−3, ũt, ũt−1) where fnarx is polynomial.

Results are presented in Table I, from which we make
the following observations. First, for methods that enforce
stability (LREE, LRSE, and iEE-s), performance on validation
data improved with model complexity. The stability constraint
appears to act as a regularizer. On the other hand, for NARX
models there is clearly a trade-off between model complexity
and validation performance. In particular, the most complex
NARX model (cubic narx-s) achieves the best fit during
training, but diverges during validation. An example trajectory
is shown in Figure 5.

In Table II we further explore this phenomenon. The NARX
models that performed best on validation data (quadratic narx-
p and narx-s) are observed to diverge when subjected to
synthetic inputs of slightly larger magnitude than the training
data. In contrast, the proposed method provides models that
are globally stable for all possible inputs.

So while NARX can provide very accurate models, indeed
quadratic narx-s achieves the lowest validation error of all
models in our test, the task of regressor selection can be
challenging. In particular, it is difficult to guarantee sensible
behaviour on unseen inputs, and therefore there are benefits
to model sets that guarantee stability a priori.

Within the methods guaranteeing stability, the approach of
[13], [21] (LRSE) offers slightly superior performance than
LREE, at the expense of greater computation time.

C. Stable subspace identification for temporal textures

In this section we briefly illustrate the application to linear
system identification, combining LREE with subspace iden-
tification. We compare least squares/N4SID (LS), LREE, the
method of [8] (LB), and the method of [10] (CG). The data
come from a temporal texture modeling problem, similar to
that studied in [10], c.f. [25] for data. The goal is to learn



TABLE I: Computation time (sec) and simulation error (×100) on training (fit) and validation (val) for the heat exchanger, c.f. §V-B. For the state-space
models of the form (2), model denotes the degrees of the polynomials (e, f, g). For the NARX models narx-p and narx-s (fit by targeting prediction and
simulation, respectively), model denotes the monomials used in the nonlinear function fnarx. Computation times for iEE-s and iEE were < 1 sec.

LREE LRSE iEE-s iEE narx-p narx-s
model time fit val time fit val fit val fit val model time fit val time fit val
(1,1,1) 1.89 3.98 8.28 2.25 3.80 7.60 4.97 10.0 4.00 7.79 linear 0.065 2.82 11.0 5.47 2.37 10.9
(3,1,1) 3.98 2.70 8.59 18.1 2.31 6.32 4.18 9.88 5.96 17.6 quadratic 0.320 1.60 4.24 33.1 0.787 2.42
(3,3,1) 4.02 2.38 4.92 59.3 1.90 4.79 3.48 7.56 6.87 18.1 cubic 0.903 1.96 5.28 166 0.709 ∞

TABLE II: Frequency of NARX model divergence (%, for 50 trials) for
synthetic inputs (uniformly distributed, as in the validation set).

Max input, |u| 1.2 1.4 1.5 1.6 1.8 2.0 2.2
narx-p (quadratic) 0 0 0 0 0 32 100
narx-s (quadratic) 4 54 98 100 100 100 100

TABLE III: Performance of various methods on the temporal texture problem:
dataset steam.y.sub2 from [25]. Reconstruction error is defined as (Jee−
Jee(θls))/Jee(θls), where θls is the least squares (LS) solution. Validation
error is normalized simulation error on validation data, initialized from the
final state used in training and simulated without inputs. N = 80 and nx =
40 as in [10].

Method LS LREE LB CG
Reconstruction error 0 0.658 1.62 15.5
Validation error 1.077 0.963 1.038 1.217
Spectral radius 1.009 0.9920 0.9964 0.9990

a model that generates realistic-looking sequences of steam
rising from a manhole cover. Training data is a sequence of
N = 80 images (115×170 pixels). A reduced representation,
attained by a singular value decomposition, is used as a
state basis (nx = 40). Unconstrained minimization of Jee
(least squares) leads to an unstable model, which produces
unrealistic sequences during long-term simulations (excited
by white noise), c.f. Figure 6. Of the methods that guarantee
stability, LREE achieves the best performance, c.f. Table III.
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