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Abstract— We consider identification of externally positive
linear discrete-time systems from input/output data. The pro-
posed method is formulated as a semidefinite program, and is
guaranteed to identify models that are ellipsoidal cone-invariant
and, consequently, externally positive. We demonstrate empiri-
cally that this cone-invariance approach can significantly reduce
the conservatism associated with methods that enforce internal
positivity as a sufficient condition for external positivity.

I. INTRODUCTION

Systems for which physical constraints imply nonnegativ-
ity of the quantities of interest are ubiquitous in applications,
being found in areas such as economics, chemistry, medicine,
data and electricity networks [9], [11], [19], [23]. For exam-
ple, consider the linear discrete-time invariant system

G :

{
xt+1 = Axt +But,

yt = Cxt +Dut,
(1)

with state vector x ∈ Rnx , input u ∈ Rnu and output
y ∈ Rny . Here y could be the pH value of a solution within
a tank, which is controlled via the flow u of some acid
solution. Clearly, u and y are only measured in nonnegative
quantities. Systems for which positive inputs lead to positive
outputs are said to be externally positive. If in addition the
state is confined to be nonnegative, the system is referred to
as internally positive. In modeling applications, it is often
important (or even essential) to respect such positivity prop-
erties; simulations that fail to do so may lead to questionable
conclusions that lack interpretability.

Despite the prevalence of (internally and externally) pos-
itive systems, data-driven modeling (a.k.a. identification)
of such systems has received little attention. Most of the
research effort has focused on the so-called positive real-
ization problem, i.e., determining the conditions for which
there exists an internally positive realization of a system
with nonnegative impulse response, c.f. [3]. Among the few
published results concerned with the identification problem
are [4], which presents conditions for ‘compartmentality’ of
identified models; [22], which considers third order internally
positive systems with Poisson output; and [14], [25], both
concerned with model stability of internally positive systems.

In this paper we suggest convex modifications to the
subspace identification method, c.f., [21], [27], which are
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guaranteed to produce externally positive models. Since in
general there is no polynomial time test for external positivity
[6], our main idea is to utilize a recently proposed sufficient
condition based on ellipsoidal (second-order) cones [13].
This has the advantage of applicability to systems known to
have no internally positive realization. Furthermore, we will
see that exploiting prior knowledge of external positivity can
even improve fidelity of the identified model.

II. BACKGROUND

A. Notation

The following notation for real matrices and vectors X =
(xij) are used throughout this paper. We say that X ∈ Rm×n≥0
is non-negative, if all entries are non-negative (xij ≥ 0 for
all i, j). We use the notation X(:, i) and X(j, :) to denote
the i-th column and j-th row of X .

If X = X ′, then we write X � 0, or X � 0 if X is
positive definite, or semi-definite, i.e. the set of eigenvalues
of X , σ(X) ⊂ [0,∞]. The cone of positive definite (semidef-
inite) n×n matrices is denoted Sn++ (Sn+). We also use these
notations to describe the relation between two matrices, e.g.
A � B defines A−B � 0. The set of n×n skew-symmetric
matrices is denoted An, i.e., X ∈ An implies X = −X ′.

A real vector valued function u(t) ∈ Rm is called
non-negative if and only if u(t) ∈ Rm≥0 for all t ≥
0. The inertia (p, z, n) of X is defined by the number
of eigenvalues of X with positive, zero and negative real-
parts, respectively counting multiplicities.

The normal distribution with mean µ and covariance Σ is
denoted N (µ,Σ).

B. Cone invariance

Definition 1. Let K ⊂ Rn be a cone and A ∈ Rn×n. K is
called A-invariant if and only if AK ⊂ K.

Definition 2. (A,B) is called cone-invariant w.r.t. a cone K
if and only if K is A-invariant and B(:, i) ∈ K for all i.

Definition 3 (Ellipsoidal cones). Let Q = Q′ ∈ Rn×n with
inertia (n− 1, 0, 1), then

KQ := {x : x′Qx ≤ 0}

is called an ellipsoidal double-cone. If p ∈ Rn is such that

{p}⊥ ∩ KQ = {0}

where {p}⊥ denotes the orthogonal complement of linear
span {p} of p, then KQ,p := {x : x′Qx ≤ 0, p′x ≥ 0} is
called an ellipsoidal cone.

The following is an straight-forward modification of [13,
Theorem 1] to A-invariant cones, using the results in [24].



Proposition 1. Let Q = Q′ have inertia (n− 1, 0, 1). Then
KQ,p is A-invariant if and only if

∃γ, τ : ATQA− γQ � 0, Q+ τpp′ � 0. (2)

The cone defined by Ln+ := KJn,e1 , where Jn :=
diag(−1, 1, . . . , 1) ∈ Rn×n and e1 denotes the first canonical
vector, is commonly referred to as the Lorentz cone or
sometimes the ice-cream cone.

Note that if K ⊂ Rn is a convex cone, then {A ∈ Rn×n :
AK ⊂ K} defines a convex cone. In case of Ln+, it has been
shown in [15] that this cone has a linear matrix inequality
(LMI) representation. In order to state these LMIs, let the
linear map Wn : Rn → Rn−1×n−1 be defined as

Wn(x) :=


x1 + x2 x3 . . . xn
x3 x1 − x2 0
...

. . .
xn 0 x1 − x2

 .

Then for any A ∈ Rn×n with arbitrary rank-1 decomposition
A =

∑
i uiv

′
i, it is defined that

(Wn ⊗Wn)(A) :=
∑
i

(Wn(ui)⊗Wn(vi)),

where ⊗ denotes the Kronecker product for matrices. Fur-
thermore, let us define

An−1 ⊗An−1 := {X ⊗ Y : X,Y ∈ An−1}.

Proposition 2. Let n ≥ 3 and A ∈ Rn×n. Then Ln+ is
A-invariant if and only if ∃X ∈ An−1 ⊗An−1 such that

Wn(A) := (Wn ⊗Wn)(A) +X � 0. (3)

In [16] it has been shown that Proposition 2 remains true
if An−1 ⊗An−1 is replaced by the linear subspaceM =

M11 · · · M1n

...
. . .

...
Mn1 · · · Mnn

 : Mij ∈ A

 ,

which is a condition that is easier to implement in conven-
tional software (see [12], [20]).

C. Positive Systems
Next we recall the notations and properties of externally

and internally positive systems.

Definition 4. A linear system (1) is called externally positive
if and only if its output corresponding to a zero initial state
is non-negative for every non-negative input.

Proposition 3. A linear system (A,B,C,D) is externally
positive if and only if ∀t ≥ 0 : CeAtB ∈ Rny×nu

≥0 and
D ∈ Rny×nu

≥0 . [11]

It is readily seen that every single-input-single-output
(SISO) externally positive system (A,B,C) is invariant
with respect to its so-called reachable cone R(A,B) :=
cl(cone{AkB : k ∈ N0}), where cl(·) denotes the topologi-
cal closure and cone(·) the convex conic hull. In fact, this is
the smallest A-invariant cone that includes B, i.e. if (A,B)
is invariant w.r.t. to a cone K, then R(A,B) ⊂ K.

In general, it is NP-hard to test whether a system is
externally positive. However, in [13] the following tractable
test has been suggest. Assume that A has a simple dominant
pole, then (A,B) will always be invariant w.r.t an ellipsoidal
cone KQ. Hence, letting the dual cone of KQ be defined as

K∗Q := {y ∈ Rn : x′y ≥ 0 for all x ∈ KQ},

external positivity can be concluded if all columns of C lie
within K∗Q and D ∈ Rny×nu

≥0 . This motivates the following
definition, which implies external positivity.

Definition 5. A linear system (1) is called cone-positive w.r.t.
a cone K if and only if K is A-invariant, B(:, i) ∈ K and
C(j, :)′ ∈ K∗ for all i and j.

Definition 6. A linear system (1) is called internally positive
if and only if its state and output are non-negative for every
non-negative input and every non-negative initial state.

Internal positivity of (1) requires that the non-negative
orthant Rnx

≥0 is invariant w.r.t. A. In [5] it is shown, that
this is the case if and only if A ∈ Rnx×nx

≥0 .

Proposition 4. A discrete linear system (A,B,C,D) is
internally positive if and only if A,B,C,D are non-negative
[11].

Note that if a system admits an internally positive real-
ization, then (A,B) must be invariant w.r.t to a polyhedral
cone. In contrast to ellipsoidal cones, there are examples of
externally positive systems where this is not the case [3].

D. Problem statement
The following problem is investigated in this paper: Given

measured input-output data {ũt, ỹt}Nt=1 from an externally
positive system, find a cone-positive system. Since the
simultaneous search for system matrices and the cone is
nonconvex, we employ the following two step strategy: (i)
estimate internal states from the input/output data and find a
cone that encloses these states; (ii) find a system that is cone
positive w.r.t to the estimated cone and minimize a convex
measure of model fidelity (namely, equation error, c.f. (7a)).

III. SUBSPACE IDENTIFICATION OF EXTERNALLY
POSITIVE SYSTEMS

A. Subspace identification
Since their introduction in the 1990s [18], subspace meth-

ods have become an indispensable tool for the identification
of linear dynamical systems; c.f. [21] for a recent survey. For
the purpose of this paper, a subspace identification algorithm
SS can be interpreted as a singular value decomposition
(SVD) of a weighted matrix, constructed from measured
input/output data {ũ, ỹ}, that yields an estimate x̃ of the
internal states of a linear system, i.e.

{x̃}Nt=1 = SS({ũ, ỹ}Nt=1).

For a purely deterministic system,1 i.e.,

xdt+1 = Axdt +Bũt, ỹ = Cxdt +Dũt (4a)

1In the stochastic case, where additive Gaussain noise effects the states
and measurements in (4), the subspace algorithm returns x̃ corresponding
to the Kalman filter state estimates, c.f. [27, §4.2].



the state estimate is exact, up to a similarity transformation,
i.e. x̃t = Mssx

d
t , c.f. equation 2.13 in [27, §2.2]. The user

selected weights on the data matrix influence the transforma-
tion Mss, and give rise to the different subspace algorithms,
e.g. N4SID, CVA, MOESP, c.f. [27, §4.3]. For identification
of generic LTI systems, the unknown transformation Mss
influences the state-space realization of the identified system,
but has no effect on the input-output dynamics.

For identification of internally positive systems, the arbi-
trary state transformation Mss is problematic, as there is no
guarantee that the state estimates x̃ will be consistent with an
internally positive realization of the dynamics. Specifically,
MssAM

−1
ss , MssB, or CM−1ss may not be nonnegative,

even if (4) represents an internally positive system. This
is a consequence of the fact that internal positivity is not
preserved under arbitrary similarity transformations. In such
cases, subspace identification subject to internal positivity
constraints (i.e. nonnegativity of the system matrices) as in
[17], [25] may lead to poor performance, even in the absence
of noise. In contrast, cone-positivity is just an input-output
property, which is preserved under arbitrary similarity trans-
formations, and thus Mss provides no fundamental barrier to
identification of such systems.

For clarity of exposition in the sequel, let us define the
following convex parameterization of models that are cone-
positive w.r.t. Lnx

+ ,

ΘCP := {A,B,C,D :Wnx
(A) � 0, (5a)

B(:, i) ∈ Lnx
+ , i = 1, . . . , nu (5b)

C(i, :) ∈ Lnx
+ , i = 1, . . . , ny (5c)

D ∈ Rk×m≥0 }. (5d)

B. Basic approach
The properties discussed in Section III-A motivate the

following simple procedure for identifying systems invariant
w.r.t. Lnx

+ .
1. Given nonnegative {ũt, ỹt}Nt=1, obtain state estimates
{x̃t}Nt=1 using a subspace algorithm, e.g. N4SID [26].

2. Search for an ellipsoidal cone KQ̃ that encloses {x̃t}Nt=1.
Let P ∗ ∈ Snx and p∗ ∈ Rnx denote the optimal solutions
to the convex program

min
P,p

− log detP + ‖p‖ (6a)

s.t. p′x̃t ≥ ‖Px̃t‖, t = 1, . . . , T (6b)
P � I. (6c)

Then Q̃ = P ∗
′
P ∗ − p∗p∗′ defines a suitable cone KQ̃.

This approach is motivated by the Löwner-John ellipsoid
(see [8]).

3. Let Q̃ = UΛU ′ denote the eigendecomposition of Q̃.
Then applying the transformation T̃ = U |Λ| 12 ensures
that x̄ := T̃ x̃t ∈ Lnx

+ , ∀t.
4. Minimize least squares equation error subject to cone-

invariance constraints, i.e. solve the convex program

min
A,B,C,D

E(x̄) :=

N−1∑
t=1

|εt(x̄)|2 +

N∑
t=1

|ηt(x̄)|2 (7a)

s.t. (A,B,C,D) ∈ ΘCP (7b)

where ε and η denote the equation errors

εt(z) = zt+1 −Azt −Bũt, ηt(z) = ỹt − Czt −Dũt.

We note, in passing, that equation error E , as in (7a), is the
usual cost function minimized in subspace identification.

The method outlined above can be solved as a semidefinite
program [28], for which many good general-purpose solvers
exist, and guarantees cone-invariance of the identified sys-
tem w.r.t. Lnx

+ . However, the effectiveness of this approach
depends on our ability to accurately estimate the cone
KQ̃. Unfortunately, it is unlikely that our estimate KQ̃ will
coincide perfectly with cone associated with the optimal
cone-positive system, for the following reasons:

i. The measurements are usually corrupted by noise and
so state estimates are not perfect.

ii. Nonnegative inputs only permit the internal states to
occupy a subset of the reachable cone, which is not
necessarily an ellipsoidal cone.

iii. The closer the states are to the boundary of the reachable
cone, the more accurately the cone can be estimated.
However, it is unknown how to generate such an input
sequence.

C. Cone estimation given approximate system
Given the difficulties associated with estimating the cone

KQ̃ from the states x̃ alone, we propose an alternative
method in which we first identify a model of the system
using standard subspace techniques, and then use this model
to estimate the cone. Specifically, after performing Steps 1-3
outlined in Section III-B, we solve the convex program

(Als, Bls, Cls, Dls) = arg min
A,B,C,D

N−1∑
t=1

|εt(x̄)|2 +

N∑
t=1

|ηt(x̄)|2.

(8)

This unconstrained minimization can be accomplished by
linear least squares, as in standard subspace identification
methods. We now use the system (Als, Bls, Cls, Dls) to search
for a cone KQ̂, where Q̂ is parameterized by

Q̂ =

[
−r0 r′1
r1 R

]
∈ Snx

for r0 ∈ R>0, r1 ∈ Rnx−1 and R ∈ Snx−1
++ . Notice that

Q̂ has inertia (nx, 0,−1) by construction. To identify Q̂ we
solve the program

min
δ1,δ2,δ3,Q̂,γ,τ

δ1 + δ2 + δ3 (9)

s.t. A′lsQ̂Als − γQ̂ � δ1I
Bls(:, i)

′Q̂Bls(:, i) ≤ δ2, i = 1, . . . , nu

Q̂+ τCls(i, :)Cls(i, :)
′ � −δ3I, i = 1, . . . , ny

δ1, δ2, δ3, τ ≥ 0

where δ1, δ2, δ3, τ, γ ∈ R. Note that (9) is convex (SDP) for
constant γ. In practice, a coarse grid-search over γ ∈ [0, 1]
is sufficient to solve (9) and obtain Q̂.

When the true system generating the problem data is
ellipsoidal cone-positive, and in the absence of any mea-
surement noise, (Als, Bls, Cls, Dls) will also be cone-positive



w.r.t. some ellipsoidal cone, which will be recovered by (9),
with δ1 = δ2 = δ3 = 0. In the presence of measurement
noise, (8) will not generally return an ellipsoidal cone-
positive system. Nevertheless, we demonstrate empirically
that in such situations the above procedure yields useful cone
estimates, KQ̂, c.f. Section IV-B.

Finally, with the cone KQ̂ returned by (9), we apply the
transformation T̂ = Û |Λ̂| 12 to obtain x̂t := T̂ x̄t = T̂ T̃ x̃t,
where Q̂ = Û Λ̂Λ̂′ denotes the eigendecomposition of Q̂.
With these transformed states, we minimize E(x̂) subject to
cone-invariance constraints, i.e. we solve

min
Â,B̂,Ĉ,D̂

E(x̂) =

N−1∑
t=1

|εt(x̂)|2 +

N∑
t=1

|ηt(x̂)|2 (10a)

s.t. (Â, B̂, Ĉ, D̂) ∈ ΘCP. (10b)

Remark 1. The performance of the methods outlined in both
Section III-B and Section III-C can sometimes be improved
by grid searching over a one-dimensional scaling parameter,
α > 0, such that we minimize E(x̄α) and E(x̂α) in (7)
and (10), respectively, where x̄α = diag(α, 1, . . . )x̄ and
x̂α = diag(α, 1, . . . )x̂. This scaling of the states can help
compensate for inaccuracies in the estimated cone, that arise
due to the reasons outlined in Section III-B.

D. State transformations for internal positivity constraints

Despite the fact that there are systems which do not leave
a polyhedral cone invariant, our basic approach can also be
used by replacing KQ̃ with a polyhedral cone. This has the
advantage that also an internally positive realization can be
obtained (see [2], [10]). The purpose of this section is to
provide a method of identifying systems subject to internal
positivity constraints, for comparison against our proposed
cone-invariance method in the sequel.

The easiest way to obtain a polyhedral cone that encloses
{x̃t}Nt=1 is to use cone({x̃t}Nt=1). Then instead of applying a
state transformation, we can directly modify the least squares
estimation to

min
A,B,C,D,PA,PB

E(x̄) :=

N−1∑
t=1

|εt(x̄)|2 +

N∑
t=1

|ηt(x̄)|2

(11a)

s.t. AX = XPA, PA ∈ RN×N≥0 (11b)

B = XPB , PB ∈ RN×m≥0 (11c)

CX ∈ Rk×N≥0 , (11d)

D ∈ Rk×m≥0 . (11e)

where εt(x̄) and ηt(x̄) are defined as before.

IV. CASE STUDIES

A. Identification of internally positive systems

In this section we apply the proposed method to identifica-
tion of internally positive systems. Specifically, we compare
the following three methods:

i. Cone-invariant: the procedure outlined in Section III-C.
ii. Least squares: unconstrained minimization of equation

error, i.e. (8), as in standard subspace methods.

iii. Internally positive: the procedure (11) outlined in Sec-
tion III-D.

The numerical experiment consists of 300 trials. In each trial,
we randomly generate a 3rd order (nx = 3) SISO stable
internally positive system, and simulated for N = 400 time
steps, subject to a nonnegative Gaussian input; i.e. ũt = |wt|
where wt ∼ N (0, 1). The simulated output is then corrupted
by additive Gaussian noise, to achieve a signal-to-noise ratio
(SNR) between 1-30dB (the SNR is randomly selected in
each trial). These inputs and outputs are then passed as
problem data to the three methods listed above.

The results of the experiment are depicted in Figure 1, in
which we plot the H∞ error between the identified model
and the true model. Figure 1(a) compares the performance
of least squares to our proposed cone-invariant method.
We draw two observations from the scatter plot. First, the
cone-invariant method generally outperforms least squares,
achieving lower error in 75% of the trials. Secondly, in 11%
of trials, the system from least squares is not externally pos-
itive (such trials are indicated by a red cross in Figure 1(a)).
Furthermore, such systems tend to have the worst H∞ error,
which is not surprising, as the true system is internally (and
therefore externally) positive.

In Figure 1(b) we compare the internally positive method
to our proposed cone-invariant approach, and observe that
the latter achieves lower H∞ error in the majority (78%)
of trials. This illustrates the fundamental difficulty of iden-
tifying internally positive systems from input/output data:
even after a search for a polyhedral cone, as in (11), it is
challenging to find a basis for the states from subspace that
is consistent with a positive realization of the dynamics.

B. Identification of externally positive systems

In this section we apply the proposed method to identifi-
cation of externally positive systems, that are not necessarily
internally positive. Specifically, we compare the same three
methods as in Section IV-A, in addition to the method:

iv. Cone-invariant (basic): the “basic” procedure outlined
in Section III-B.

To generate the externally positive systems, we randomly
generate

A = 0.9

 cos(
√
2
π ) sin(

√
2
π ) a13

− sin(
√
2
π ) cos(

√
2
π ) a23

a31 a32 1


where a13, a23, a31, a32 ∼ N (0, 0.04), and set B =
[0.5, 0.6, 1]′, C = [0.5, 0.5, 1] and D = 0. This gives a
system similar to the one provided by [3] as an example of a
cone-positive system with no internally positive realization.2.

The numerical experiment consists of 700 trials, following
the same procedure described in Section IV-A, except with
randomly generated externally positive systems, as described
above. The results are depicted in Figure 2. Figure 2(a)
compares the performance of our cone-invariant method to
the more basic cone-invariant (basic) approach outlined in
Section III-B. The merits of searching for a cone via the

2After each random generation, we check for external positivity of the
system; only externally positive systems are considered in the experiment.
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(a) H∞ error for cone-invariant vs least squares. Red crosses denote
identified systems from least squares that are not externally positive,
whereas green dots denote systems that are externally positive.
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(b) H∞ error for cone-invariant vs internally positive.

Fig. 1: H∞ error between identified model and true model, where the
true model is internally positive, for 300 different experimental trials; c.f.
Section IV-A for details.

program (9), rather than simply fitting a cone to the states
from subspace, is clearly illustrated; the former achieves
lower H∞ error in 84% of the trials. Interestingly, even
when the system recovered from (8) was not cone-positive
(such cases are denoted by a red triangle in Figure 2(a), and
imply that (9) cannot be solved with δ1 + δ2 + δ3 = 0), the
proposed method generally performs much better than the
basic approach.

Figure 2(b) compares the performance of our cone-
invariant method to simple least squares. Unlike identifica-
tion of internally positive systems, least squares generally
performs better than the cone-invariant method. However,
in the majority of these cases, the model from least-squares
is not externally positive. If we restrict the comparison to
externally positive models, then on balance both methods
perform comparably. The key point to emphasize here is
that the proposed cone-invariant method guarantees external
positivity, whereas least squares fails to return an externally
positive model in 45% of trials.

Finally, in Figure 2(c) we compare the internally posi-
tive method to our proposed cone-invariant approach, and
observe the latter outperforms the former in 96% of trials.
This is not surprising, as the true system is designed to not
have an internally positive realization, and demonstrates the
conservatism introduced by enforcing internal positivity as a
means to ensure external positivity.
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(a) H∞ error for cone-invariant vs cone-invariant (basic). The red
triangles denote cases in which the model from (8) was not cone-
positive.
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(b) H∞ error for cone-invariant vs least squares. Red crosses denote
identified systems from least squares that are not externally positive,
whereas green dots denote systems that are externally positive.
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(c) H∞ error for cone-invariant vs internally positive.

Fig. 2: H∞ error between identified model and true model, where the
true model is externally positive, for 700 different experimental trials; c.f.
Section IV-B for details.

C. pH neutralization in a stirred tank

In this section we identify a model for pH neutralization
in a stirred tank. This system has two types of acid flows as
the input and the pH value of the tank content as its output.
This is a standard benchmark identification problem with
data from the DaISy database (see [7]). We apply the same
three identification algorithms considered in Section IV-A.
As with all the case studies, we use N4SID to obtain state
estimates. For this problem, the state dimension was nx = 3.

The simulations based on the training and validation data
are shown in Fig. 3(a) and Fig. 3(b), respectively. The nor-



malized simulation error, defined ENSE =
∑

t |ỹt−yt|
2∑

t |ỹt|2
where

y denotes the simulated output and ỹ denotes measured data
(for training or validation), is also reported. We make three
remarks about Figure 3. First, the system is highly nonlinear,
and so it is difficulty to achieve high fidelity modeling with
a linear system. Nevertheless, we observe that our proposed
cone-invariant method is competitive with standard subspace
methods (least squares), achieving comparable training error
but lower error on validation data. Finally, we note that
the model from least squares is not externally positive.
Our proposed cone-invariant method guarantees external
positivity with far better performance than methods that
impose internal positivity constraints.
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(a) Simulated output on training data.
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(b) Simulated output on validation data.

Fig. 3: Simulated performance for the pH neutralization process in a stirred
tank. Our proposed cone-invariant method is compared to least squares (as
in standard subspace methods), as well the method of Section III-D, which
constrains the model to be internally positive.

V. CONCLUSIONS AND FUTURE WORK

We proposed several approaches for system identification
with external positivity guarantees. Such models have the ad-
vantage of respecting very common physical constraints. In
contrast, conventional methods may lead to models that are
not externally positive; c.f. Section IV-B. This can be prob-
lematic, for instance, if the model is used for simulations.
Moreover, as shown in our case studies, enforcing external
positivity may even improve the fidelity of the identified
model, and generally performs better than enforcing internal
positivity as a sufficient condition for external positivity. In
the future work, it could be interesting to consider other
characterizations of external positivity such as in [1].
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