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Abstract— Recent years have witnessed renewed interest in
so-called data-enabled control, in which predictions of system
behavior are made directly from measured data, in place of
an explicit system model. In this paper, we consider systems
with measurable disturbances, and present a closed-loop data
enabled predictive control strategy that searches over sequences
of feedback policies, thereby extending the open-loop strategy
recently proposed in Huang et al. [1]. We make use of recent
advances in polytopic containment to derive convex formu-
lations of the minimax (i.e. worst-case disturbances) control
problem, for a variety of cost functions, constraints, and sets of
allowable disturbances. Advantages over open-loop and non-
robust alternatives are illustrated with a numerical example.

I. INTRODUCTION

Model-based control has been a dominant paradigm in
theory and practice since, at least, the breakthrough con-
tributions [2], [3] of Kalman in the early 1960s. Model-
based control, of course, requires knowledge of an accurate
model of the system. In some settings, such models can
be constructed from first principles; increasingly, however,
models must be ‘learned’, or at least refined, with observed
data, in a process called ‘system identification’ [4].

Due, perhaps in part, to an increasing abundance and
dependence on data, as well as the dramatic success of
reinforcement learning in games [5], [6], recent years have
witnessed a resurgence in research activity at the intersection
of learning from data and control, cf. [7] for a recent survey.
In particular, there has been renewed interest in so-called
‘data-enabled control’, cf. Related work below. The data-
enabled approach eschews the use of an explicit system
model; instead, predictions about system behavior are made
directly from observed data, under the assumption that this
behavior can be well-approximated by a linear dynamical
model. Such an approach is not so much ‘model-free’ as
it is ‘model-implicit’; quantities associated with the implicit
model, such as parameter coefficients or state dimension, are
no longer explicitly specified.

Recent work [1] has extended the data-enabled approach
to systems with disturbances, under the assumption that past
- but not future - disturbances are directly measurable by the
controller; cf. §II-B for a detailed problem specification. In
the present paper, we build upon [1], offering the following
two principal contributions. First, we present a closed-loop
formulation of the data-enabled predictive control problem,
in which one searches over a sequence of feedback policies,
rather than an open-loop sequence of inputs, as in [1]. A
feedback policy is able to respond to disturbances online;
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recognition of this fact helps reduce conservatism when the
controller is synthesized subject to robust constraints and
performance objectives, involving ‘worst-case disturbances’.
Second, we extend the minimax formulation of [1] to
consider a wider variety of costs, constraints, and sets of
allowable disturbances. We make use of recent developments
in convex formulations of polytopic containment problems
[8], to derive more computationally efficient formulations
of the minimax robust synthesis problem, for polytopically
constrained disturbances.

A. Related work

The foundation for the specific approach to data-enabled
(a.k.a data-driven) control pursued in this paper can be traced
back to the work of Willems et al. [9], which proved that
all (input-output) trajectories of a linear dynamical system
lie in an affine subspace formed by a finite subset of those
trajectories, subject to persistence of excitation conditions;
cf. Theorem 4. Shortly thereafter, this result was exploited
for data-driven simulation and control, cf. e.g. [10].

Recently, there has been a resurgence of interest in the
application of [9] to data-driven control. The so-called ‘Data-
enabled Predictive Control’ approach, a.k.a. ‘DeePC’, was
introduced in [11]. DeePC builds upon [10], with a greater
focus on constrained optimal control. A distributionally ro-
bust version of DeePC was presented in [12], which gave
a principled interpretation to the regularization heuristics
proposed in [11]. Further robustness results were presented
in [13], [14], while questions concerning the necessity of per-
sistence of excitation were investigated in [15]. Of greatest
relevance to the present paper is [1], which extends DeePC
to handle measurable disturbances; cf. §II-B for a detailed
problem formulation. We build on this work by deriving
convex formulations of the search for closed-loop policies,
rather than open-loop input sequences. To do so, we make
use of a parametrization of closed-loop policies known as
disturbance feedback, cf. e.g., [16], [17], which has roots
dating back to the 1970s [18].

II. PRELIMINARIES

A. Notation and terminology

The transpose of a vector a is denoted a′. For a sequence
{xk}Nk=1, with xk ∈ Rn, let xa:b := [x′a, . . . , xb]

′, i.e.,
the column vector obtained by stacking elements of the
sequence, from a to b, b ≥ a,∈ Z. When there is no risk
of ambiguity, we drop the subscript when the vectorized
representation includes all elements of the sequence, e.g.,
for {xk}Nk=1, x1:N is equivalent to x. We will often refer to
a sequence {xk}Nk=1 by its ‘vectorized’ notation x1:N , for



brevity. For a sequence x1:N let HL(x) denote the block
Hankel matrix

HL(x) =


x1 x2 . . . xN−L+1

x2 x3 . . . xN−L+2

...
...

. . .
...

xL xL+1 . . . xN

 .
A signal x1:N , xk ∈ Rn, is said to be persistently exciting
of order L if rank (HL(x)) = nL, i.e., full row rank. For
x ∈ Rn, let ‖x‖p := (

∑n
i=1 |x(i)|p)

1
p , where x(i) is the i-th

element of x. The n-dimensional p-norm unit ball is denoted
Bnp := {x ∈ Rn | ‖x‖p ≤ 1}. ‖x‖2Q is shorthand for x′Qx.

B. Problem statement

We are interested in controlling the following system,

xt+1 = f(xt, ut, wt), yt = g(xt, ut, wt), (1)

where xt ∈ Rnx , ut ∈ Rnu , wt ∈ Rnw , yt ∈ Rny denote the
internal state, input, disturbance, and output respectively, at
time t. We make the following crucial assumption:

Assumption 1. The dynamical system (1) can be approxi-
mated with sufficient accuracy, for the purpose of control, by
a linear time invariant (LTI) model, possibly of higher order.

While this assumption excludes a number of important and
interesting nonlinear systems, approximation of nonlinear
dynamics with linear models is not uncommon in modeling
and control, particularly in the context of Koopman operator
theory, cf. e.g. [19]. Furthermore, Assumption 1 clearly
encompasses the special case where (1) is, in fact, linear.

Our goal is to track the (known) reference signal r0:T over
the time horizon t = 0, . . . , T . Tracking error is quantified
by a cost function, cr(y0:T − r0:T ). Possible cost functions
include, e.g., cr(·) = Q ‖·‖p, p = 1, 2,∞, where Q ∈ R+

is a nonnegative user-specified weight. Control inputs may
also be penalized via the cost function cu(u0:T ). As with the
tracking cost, popular cost functions include, e.g., cu(·) =
R ‖·‖p, p = 1, 2,∞, where R ∈ R+ is a nonnegative user-
specified weight. The total cost to be minimized is cr(y0:T −
r0:T ) + cu(u0:T ).

For 0 ≤ t1, t2 ≤ T , control inputs ut1:t2 are restricted to
the convex set Ut1:t2 . For brevity, the subscript t1:t2 will be
dropped from Ut1:t2 when it is clear from context. Popular
choices of U include, e.g., amplitude bounds: umin

t ≤ ut ≤
umax
t for t ∈ 0 : T . Similarly, system outputs yt1:t2 are

constrained to the convex set Yt1:t2 .
The true system (1) is unknown; i.e., we do not know f or

g. We do, however, assume access to input-output data from
the system, specifically, a trajectory D := {ud

t , w
d
t , y

d
t}Nt=1

satisfying (1). Notice that we have assumed that the distur-
bances are observable.

Assumption 2 (Observable disturbances, [1]). All past dis-
turbances are assumed to be known. Specifically, during
control of the system, at time t all past disturbances w0:t−1

and disturbances wd
1:N in D are known.

We wish to emphasize that this assumption is lifted di-
rectly from [1], upon which we build. Assumption 2 certainly
does not hold in all applications; nevertheless, there are some
settings in which disturbances can indeed be measured, e.g.
control of low-frequency oscillations in power systems [1],
or e.g. control of wind turbines equipped with wind speed
sensors, cf. also [20].

We will further assume that the disturbances are bounded.

Assumption 3 (Bounded disturbances). For any subset
t1, . . . , t2 of the duration under which the system is con-
trolled, i.e, 0 ≤ t1, t2 ≤ T , the disturbances wt1:t2 are
confined to a known bounded, convex set Wt1:t2 .

As with U , we will often drop the subscript t1:t2 from
Wt1:t2 when it is clear from context.

In addition to D, we will also assume that, when we
initiate control of the system at time t = 0, we have
observed the past Ti inputs, disturbances, and outputs I :=
{ut, wt, yt}−1

t=−Ti from the system. As will be clarified in
§II-C, cf. Remark 6, these observations effectively specify
the ‘initial conditions’ of the system.

We may now specify the control problem addressed in
this paper: minimization of the trajectory tracking cost, for
worst-case disturbances, i.e.,

min
u0:T∈U,y0:T

max
w0:T∈W0:T

cr(y0:T − r0:T ) + cu(u0:T ), (2)

such that {ut, wt, yt}Tt=−Ti satisfy (1), i.e., constitute a
valid trajectory of the system. Notice that {ut, wt, yt}Tt=−Ti
includes the ‘initial conditions’ in I.

C. Data-enabled approach to control

In the absence of knowledge of the true system parameters,
a common approach to solving (2) would first involve
‘learning’ an approximate system model from the supplied
data D via system identification, and then proceeding with
model-based control design.

In this paper, we adopt the so-called ‘Data-enabled
Predictive Control’ approach, a.k.a. ‘DeePC’. In DeePC, one
assumes that the system (1) can be approximated, for the pur-
pose of feedback control, sufficiently accurately by a linear
time-invariant (LTI) model. Rather than ‘learn’ an explicit
linear model via system identification, in DeePC one models
future trajectories of the system as an (affine) function of
an observed, past trajectory, D, under the assumption that
these trajectories - both past and future - are consistent with
the same underlying LTI system. In particular, one has the
following key result:

Theorem 4 (Data-enabled simulation [9]). Consider an LTI
system with the following minimal realization

st+1 = Ast +But, yt = Cst +Dut, (3)

with state st ∈ Rns . Suppose {ũt, ỹt}Nt=1 is a trajectory of
(3). Let ũ be persistently exciting of order L + ns. Then
{ūt, ȳt}Lt=1 is a trajectory of (3) if and only if there exists



g ∈ RN−L−ns+1 such that[
HT (ũ)
HT (ỹ)

]
g =

[
ū
ȳ

]
. (4)

Persistence of excitation of order L + ns is required to
have enough degrees of freedom to encode the length-L input
ū1:L, and the initial condition s̄1 ∈ Rns .

To handle disturbances, wt, as in (1), one can consider

st+1 = Ast+But+Bwwt, yt = Cst+Dut+Dwwt, (5)

with state s ∈ Rns , and (A, [B Bw]) controllable. Observe
that, compared to (3), we have introduced the disturbance
wt ∈ Rnw . Notice also that we allow the state s ∈ Rns
of the linear system (5) to be of different dimension to the
state x ∈ Rnx of the system (1). To approximate (a possibly
nonlinear) system (1) with the linear system (5), it may be
necessary to use a state of higher dimension in the latter, i.e.,
ns > nx.

By treating the disturbance w as an additional ‘input’ (i.e.,
consider an augmented input given by the concatenation of
ut and wt), one can apply Theorem 4 to (5). In particular, if
one assumes that the past data D = {ud, wd, yd} represents a
valid trajectory for (5), with {ud

t , w
d
t}Nt=1 persistently exciting

of order L + Ti, then the sequence {ut, wt, yt}Lt=−Ti is a
trajectory of (5) if and only if there exists g ∈ RN−L−Ti+1

such that 
Up
Wp

Yp
Uf
Wf

Yf

 g =


u−Ti:−1

w−Ti:−1

y−Ti:−1

u0:L−1

w0:L−1

y0:L−1

 , (6)

where[
Up
Uf

]
:= HTi+L(ud),

[
Wp

Wf

]
:= HTi+L(wd), (7)[

Yp
Yf

]
:= HTi+L(yd).

In (7), Up,Wp, Yp each have Ti block-rows, and Uf ,Wf , Yf
each have L block-rows. The relation in (6) follows from (4)
in Theorem 4 with appropriate substitutions, e.g., ũ1:N =
{ud

t , w
d
t}Nt=1.

Remark 5 (Necessary conditions for persistence of excita-
tion). The parametrization of trajectories of (5) in (7) is
only valid when vd := {ud

t , w
d
t}Nt=1 persistently exciting of

order X = Ti + L + ns. As HX(vd) has X(nu + nw)
rows and N − X + 1 columns, it can only be full (row)
rank when N − X + 1 ≥ X(nu + nw). This implies
N ≥ (Ti + L+ ns)(nu + nw).

In light of Remark 5, it is clear that the length of the
observed trajectory D must satisfy N ≥ (Ti+L+ns)(nu+
nw) to ensure validity of (6).

Remark 6 (Initial conditions). For the linear model (3), one
has the (well-known) relation: [y′1, y

′
2, . . . , y

′
`]
′ =

C
CA

...
CA`−1


︸ ︷︷ ︸

O

s1 +


D 0 · · ·
CB D · · ·

...
. . .

CA`−2B · · · D


︸ ︷︷ ︸

G


u1

u2

...
u`

 . (8)

The smallest ` ∈ N such that O has rank ns is known as
the ‘lag’ of the system. When O is full column rank one can
solve for s1 given u1:`, y1:` (and O, G).

Assuming a linear model (5) with lag `, Remark 6
implies that one should choose Ti ≥ ` such that I =
{u−Ti:−1, w−Ti:−1, y−Ti:−1} uniquely specify the initial
conditions for the subsequent trajectory {u0:L, w0:L, y0:L}.

Given D and I, (6) constitutes affine constraints on
{u0:L, w0:L, y0:L}. Assuming a linear model (5) of the
unknown system (1), one can solve the minimax reference
tracking problem in a receding-horizon fashion, by searching
over {u0:L, w0:L, y0:L} subject to this affine constraint, using
convex programing. This is the approach taken in [1], which
constitutes an open-loop predictive control strategy, as one
searches for an input sequence u0:L. In the following section,
we propose a closed-loop alternative that searches over
sequences of feedback policies, rather than sequences of
inputs.

III. CLOSED-LOOP DEEPC

It is widely appreciated that if one wishes to account
for disturbances in a constrained predictive control problem,
better performance can be obtained by optimizing over
sequences of feedback policies rather than sequences of
inputs [21]. In essence, designing a sequence of (future)
inputs does not take into account the fact that additional
information - namely, estimates of (now) past disturbances -
will be available at the (future) time when those inputs are
applied to the system.

A. Policy parametrization

We adopt a closed-loop, data-enabled predictive control
approach to solving problem (2). Specifically, at time t we
wish to determine a sequence of L + 1 policies πt0:L =
{πtk}Lk=0 to minimize cost over the horizon t, . . . , t+L, i.e.,

min
πt0:L∈U,yt0:L

max
wt:t+L∈Wt:t+L

cr(y
t
0:L − rt:t+L) + cu(πt0:L) (9)

such that {ut−Ti:t−1, π
t
0:L}, {wt−Ti:t−1, wt:t+L}, and

{yt−Ti:t−1, y
t
t:t+L} satisfy (5), i.e., constitute a valid trajec-

tory of the approximate linear model. We make the following
clarifying remarks:

i. This constitutes a standard receding-horizon (of length
L+ 1) approach to solving constrained optimal control
problems, such as (2).

ii. In the spirit of DeePC, we approximate the true unknown
system (1), with the linear model (5). The approximation



is implicit, in that we use (6) to make predictions, rather
than fitting an explicit linear model.

iii. Trajectories with the subscript t−Ti:t−1 denote past Ti
observed values of the system trajectory, and serve as
initial conditions for the predicted trajectories at time t.

iv. We use the superscript t to distinguish the predicted
future trajectories at time t (e.g. the predicted output
yt0:L), from the actual system trajectories, (e.g. yt:t+L).

v. Notice that policies πt0:L have replaced inputs ut:t+L as
the quantities for which we search.

We will parametrize the policies πt0:L as follows:

πt0 = νt0, πtk(wt:t+k−1) = νtk+

k−1∑
j=0

Kt
k,jwt+j , ∀k ∈ 1 : L.

(10)
This policy is simpler to interpret when expressed as:

πt0:L =
[
πt0
′
πt1
′
πt2
′
. . . πtL

′ ]′
=

νt0
νt1
νt2
...
νtL


︸ ︷︷ ︸

νt

+


0 · · ·

K1,0 0 · · ·
K2,0 K2,1 0

...
...

KL,0 . . . KL,L−1


︸ ︷︷ ︸

=:Kt


wt
wt+1

wt+2

...
wt+L−1

 .

Here, νt denotes a nominal input sequence, while Kt
denotes a matrix of disturbance feedback gains. Notice that
the policy πtk, which is intended to be applied at time t+ k,
depends only on disturbances wt+k−1 and earlier, which are
observable at time t+k by Assumption 2. As such, the policy
is causal and can be implemented online.

Remark 7. In (10), our notation makes it clear that the
policy πtk depends explicitly on the disturbances wt:t+k−1. A
natural question may be: should not the policy depend on all
past disturbances? This dependence is present, but implicit.
Specifically, as shall be made clear in §III-B, the decision
variables νt,Kt are designed to satisfy (6), which introduces
dependence on the past Ti disturbances, wt−Ti:t−1, as well
as wd.

B. Data-enabled prediction of system output

To solve the receding horizon problem (2), we must predict
the output of the system over the horizon t : t + L. By (6)
the (predicted) output of the linear model (5) is given by
yt0:L = Yfg (final block row of (6)) where g must satisfy

Up
Wp

Yp
Uf
Wf


︸ ︷︷ ︸

=:D

g =


ut−Ti:t−1

wt−Ti:t−1

yt−Ti:t−1

πt0:L

wt:t+L


︸ ︷︷ ︸

=:d

=


 ξt


πt0:L

wt:t+L

 . (11)

Here D is formed from the given data D, and is, therefore,
known. The quantity ξt = [u′t−Ti:t−1, w

′
t−Ti:t−1, y

′
t−Ti:t−1]′

denotes previously observed inputs, disturbances, and out-
puts, which effectively specify the initial conditions of the

model, cf. Remark 6. πt0:L denotes the sequence of policies
for which we will search. wt:t+L denotes the sequence
of future disturbances, which, as of time t, are currently
unknown, but bounded by Assumption 3.

A parametrization of solutions g for (11) is given by g =
D†d + D⊥z, where D† denotes the pseudeo-inverse of D
such that D†d gives a particular solution to (11), and D⊥ =
I − D†D such that D⊥z parametrizes the nullspace of D
for arbitrary z. By partitioning D† = [Dξ Dπ Dw] such that
D†d = Dξξ + Dππ

t + Dwwt:t+L, we have the following
parametrization of the predicted output

yt = YfDξ︸ ︷︷ ︸
=:Mi

ξ + YfDπ︸ ︷︷ ︸
=:Mπ

πt + YfDw︸ ︷︷ ︸
=:Mw

wt:t+L +D⊥z, (12)

which is affine in both the decision variables {πt, z} and the
unknown disturbances wt:t+L.

C. Policy synthesis

For clarity of exposition, we shall now derive a convex
synthesis procedure for feedback policies of the form (10),
for specific choices costs cr, cu and constraints U ,Y . This
will allow us to introduce the key ideas and machinery,
without the burden of considering the problem in full gen-
erality. Synthesis details for alternative choices of costs and
constraints are provided in §III-D.

Specifically, we choose cr(·) = ‖·‖∞, to penalize max-
imum deviation from the reference trajectory r. We shall
ignore cu, as it is straightforward to include any of the convex
costs on the input listed in §II-B. We will also assume H-
polytopic representations for U and W , i.e., U = {u ∈
R(L+1)nu | Huu ≤ hu}, W = {w ∈ R(L+1)nw | Hww ≤
hw}. For clarity, we ignore constraints (Y) on the outputs;
cf. §III-D.1 for details. Given these choices, the predictive
control problem introduced in (9) reduces to

min
yt,ν,K,z

max
w∈W

‖Miξ +Mπ(ν +Kw) +Mww +D⊥z︸ ︷︷ ︸
yt

−r‖∞

s.t. Hu(ν +Kw) ≤ hu ∀ w ∈ W = {w | Hww ≤ hw},
(13)

where π = ν +Kw is the policy parametrization from (10),
and yt = Miξ+Mππ+Mww+D⊥z is the parametrization
of the predicted output from (12). We are now in a position
to present the main contribution of this section: a convex
program that minimizes an upper bound on (13).

Theorem 8. Minimization of an upper bound for (13) can
be formulated as the following (convex) linear program:

min
ζ∈R,ν,K,z,Λr,βr,Λu,βu

ζ (14a)

s.t. ΛrHw =He(Mw +MπK), Λr ≥ 0 (14b)
Λrhw ≤ζhe +Heβ

r, (14c)

−βr =Miξ +Mπν +D⊥z − rt:t+L, (14d)
ΛuHw =HuK, Λuhw ≤ hu −Huν, (14e)

where He = [In,−In]′ and he = 12n, with n = (L+ 1)ny ,
such that Bn∞ = {x ∈ Rn| | Hex ≤ he}. Dimensionality of
all decision variables can be inferred from context.



To prove Theorem 8 we will make use of two recent results
on polytopic containment.

Lemma 9 (Polytope containment [8]). Given two sets Qi =
x̄i + GiHi ⊆ Rn, Hi = {x ∈ Rn | Hix ≤ hi}, i = 1, 2, a
sufficient condition for Q1 ⊆ Q2 is existence of Γ, Λ, and β
such that

G1 = G2Γ, ΛH1 = H2Γ, (15a)
x̄2 − x̄1 = G2β, Λh1 ≤ h2 +H2β, Λ ≥ 0. (15b)

Notice that Lemma 9 only provides sufficient conditions
for containment; this is a possible source of conservatism in
our formulation, and the reason why (14) is an upper bound.

Lemma 10 (Minimax via containment). Let H denote a
bounded H-polytope, and Q = {x ∈ Rn | x = x̄+Gω, ω ∈
H}. Then

max
ω∈H

‖x̄+Gω‖p = min
ζ∈R

ζ, s.t. Q ⊆ ζBnp (16)

Proof. By considering the epigraph formulation, the LHS of
(16) is equivalent to minζ,ω ζ, s.t. ζ ≥ ‖x̄+Gω‖p ∀ ω ∈
H. Then ζ ≥ ‖x̄+Gω‖p ∀ ω ∈ H ⇐⇒ Q ⊆ ζBnp
completes the proof.

Turning now to (14), conditions (14b)–(14d) encode the
minimax cost function, using Lemma 10. Specifically, by
making use of (12), the minimax problem can be expressed
as minimization of the slack variable ζ subject to a polytopic
containment constraint, as in (16), with x̄ = Miξ +Mπν +
D⊥z − rt:t+L, G = Mw + MπK, ω = w, and H = W .
A sufficient condition for the containment in (16) is given
by Lemma 9, and (14b)–(14d) follow directly from (15)
with {x̄1, G1} = {x̄, G} (as above), {x̄2, G2} = {0, I},
H1 = H = W , H2 = Bn∞, and p = ∞. Notice that ζBn∞ =
{x ∈ Rn| | Hex ≤ ζhe}, and so the conditions remain
affine in the decision variables. We reiterate that Lemma 9
provides only sufficient conditions for containment; this
possible conservatism means that (14) constitutes an upper
bound for the problem. Condition (14e) encodes the input
constraints, and follows by application of Lemma 9 to the
containment problem: ν +MπKw ∈ U for all w ∈ W .

We close this subsection with some brief remarks on the
difference between the open-loop and closed-loop formula-
tions. First, observe that the open-loop problem is recovered
as a special case of (14), with K ≡ 0. Consequently, the
closed-loop formulation can only increase the size of the
feasible set for the synthesis program, so the solution will
always be at least as good as the open-loop formulation.
More precisely, consider (14b). Here it is clear that K
increases the size of the feasible set of Λ that must satisfy this
equality constraint, thereby reducing conservatism (relative
to the open-loop case in which K ≡ 0).

Second, the increase in computational complexity associ-
ated with the proposed closed-loop formulation is modest:
specifically, the open-loop and closed-loop formulations re-
sult in the same class of optimization problem (e.g. an LP
in Theorem 8). The additional complexity of closed-loop

synthesis comes from introduction the additional decision
variable(s) K, the dimension of which can be controlled by
imposing structure, e.g. sparsity or repeated gains Ki,j in
(10). Furthermore, depending on the choice of cost function,
the proposed closed-loop implementation can actually be
more computationally tractable than [1], as, e.g. in the case
of quadratic costs, it avoids introduction of a constraint for
each unknown future disturbance, cf. §III-D.2 for details.

Remark 11. When the true dynamical system (1) is indeed
nonlinear, or when the observations are corrupted by unob-
served disturbances, it is necessary to introduce a regular-
ization term to the objective (14a), cf. [12]. Specifically, one
should regularize the solution g to (6); cf. §III-E for further
details and discussion.

D. Alternate problem formulations: costs and constraints

In §III-C, we derived a synthesis procedure based on
convex programing for a specific problem instance, namely,
the infinity-norm tracking cost cr(·) = ‖·‖∞. In this section,
we briefly sketch the problem formulation for a number of
alternative cost functions and constraint sets. For brevity of
notation, we define Ny = (L + 1)ny such that y ∈ RNy .
Similarly for Nu and Nw. Furthermore, to approximate the
minimax objective it is convenient to introduce

f := Miξ+Mπν +D⊥z− r, F := (Mw +MπK), (17)

so that the tracking error can be written as an affine function
of the disturbances, i.e., y − r = Fw + f , cf. (12). Note
also, that both f and F are affine functions of the decision
variables ν, z,K.

1) Constraints on outputs: It is straightforward to enforce
that the output y remain in some polytopic set Y for
all w ∈ W , when W is also polytopic. Specifically, let
Y = Hy := {y ∈ RNy | Hyy ≤ hh} be a (bounded)
polytope representing admissible values for the output. Given
the affine dependence of the output y on policies π and
disturbances w, cf. (12), we have: y ∈ Y ⇐⇒

(Miξ +Mπν + (Mw +MπK)w +D⊥z) ∈ Hy, ∀ w ∈ W.

A sufficient condition for this containment is given by
Lemma 9, which results in affine constraints on the decision
variables π = {ν,K} and z.

2) Quadratic costs, polytopic W: The approach pro-
posed in [1], upon which the present paper builds, assumed
quadratic costs - i.e, cr = ‖y − r‖2Q - and bounded distur-
bances: wmin ≤ wt ≤ wmax for all t. It is well-known that
the maxima of a convex function over a bounded polytopic
set occur at a (subset) of the vertices of the polytopic set.
As such, a tight upper bound for maxw∈w ‖Fw + f‖2Q -
note the use of (17) - can be obtained by introducing a
slack variable ζ ∈ R, and constraints ζ ≥ ‖Fw + f‖2Q for
i = 1 : 2Nw , where ŵi denotes the i-th vertex of W . As
Fw + f is affine in the decision variables, these constraints
define a convex set; however, the number of constraints
grows exponentially in Nw. A ‘downsampling’ procedure to
reduce the dimensionality of w ∈ RNw was proposed in [1].



This construction allows the minimax objective to be
minimized to global optimality, at the expense of exponen-
tially (in Nw) many constraints. As an alternative, one can
formulate a more computationally tractable upper bound,
at the expense of conservatism, using the S-procedure. As
above, we can form an upper bound by introducing a slack
variable ζ such that ζ ≥ ‖Fw + f‖22 holds for all w ∈ W .
By the Schur complement, this condition is equivalent to

F + L∆R+R′∆L′ � 0, ∀ ∆ ∈∆, (18)

where

F =

[
ζ f ′

f I

]
, L =

[
0
F

]
, R =

[
I 0

]
, ∆ = diag(w),

and ∆ = {diag(w) ∈ RNw×Nw | |w(i)| ≤ 1, i = 1 :
Nw} encodes the set of feasible disturbances W = BNw∞ .
By (a straightforward modification of) [22, Lemma 3.1] a
sufficient condition for (18) is the existence of T = diag(τ)
with multiplier τ ∈ RNw such that[

F −R′T R L′
L T

]
� 0. (19)

Notice that (19) is linear in the slack variable ζ, multiplier
τ , and f, F , which are in turn affine in the decision variables
ν,K, z. Therefore, minimization of the upper bound ζ subject
to (19) is a semidefinite program (SDP).

3) Quadratic costs, disturbances of bounded energy: In
some applications, it may be more appropriate to consider
disturbances bounded by some elliptical set, e.g., to encode
‘finite energy’ constraints on the disturbance. Specifically,
consider W = {w ∈ RNw | w′Pw + 2p′w + q ≤ 0}, where
P ∈ SNw+ , p ∈ RNw , and q ∈ R are known. By denoting
f := Miξ + Mπν + D⊥z − r and F := (Mw + MπK),
we can express the tracking error as y − r = Fw + f , cf.
(12). A quadratic cost on this error is given by ‖Fw + f‖2Q.
Minimizing this quadratic cost for all w ∈ W is then
equivalent to minimizing an upper bound ζ ≥ ‖Fw + f‖2Q
that holds for all w ∈ W . To this end, by application of the
S-procedure, we have: ζ ≥ ‖Fw + f‖2Q ⇐= w ∈ W if and
only if there exists τ ∈ R+ such that

τ

[
P p
p′ q

]
−
[
F ′QF F ′Qf
f ′QF f ′Qf − s

]
� 0. (20)

This matrix inequality is nonlinear (quadratic) in the decision
variables implicit in F and f ; however, by application of the
Schur complement, (20) is equivalent to[
P Θ
Θ′ I

]
� 0,

[
τP τp
τp′ τq + ζ

]
︸ ︷︷ ︸

P

,

[
Q

1
2F Q

1
2 f

0 0

]
︸ ︷︷ ︸

Θ

.

(21)
Condition (21) is an LMI, and so minζ,τ,F,f ζ, s.t. (21) is
a convex program (SDP).

4) Nominal disturbances: Finally, a popular choice of
objective in robust receding horizon control, is to assume that
the disturbances take on some nominal value, denoted w̄, cf.
e.g. [16, §7.1]. Here, w̄ could represent the expected value
of w if one can assume some distribution over disturbances;

alternatively, it could simply denote some likely value of the
disturbance, e.g., zero. With the parametrization of the output
in (12), we have a tracking cost

cr(Miξ +Mπν + (Mw +MπK)w̄ +D⊥z − r),

which is convex in the decision variables; no polytopic
containment problem need be solved. Constraints u ∈ U and
y ∈ Y could still be enforced robustly (i.e., for all w ∈ W),
however, the cost function is ‘optimistic’ in that we optimize
for nominal, rather than worst-case, disturbances.

E. Regularization

In Remark 11 we mentioned that careful regularization
is necessary to achieve good performance in the DeePC
approach. Here we elaborate on that point. Given a nominal
model, any optimal control synthesis procedure will exploit
the properties of this model to obtain the lowest possible cost.
However, this is merely the cost of the synthesis procedure
given the nominal model, which may be different to the
cost of deploying the controller on the true system, due to
inaccuracies in the nominal model. Ensuring satisfactory per-
formance on the true system despite errors in the modeling
process is the premise of robust control.

In DeePC, the affine subspace (6) plays the role of (an
implicit) model, in that it is used to predict system behavior.
DeePC then optimizes jointly over the ‘controller’ (e.g. a
sequence of inputs or feedback policies) and the resulting
system response. As this optimization occurs jointly, DeePC
effectively searches for the ‘best case’ (as measured by the
cost function) system response that is consistent with the
observed data. When the true system - that generated the data
D - is not LTI (as assumed), it is essential to regularize the
predicted response, to constrain the extent to which DeePC
can exploit the inaccuracies in the ‘model’ (6).

One such regularization strategy is to introduce a penalty
term such as λ ‖g‖p to the control objective. Here, g (an
implicit decision variable, cf. (12)) denotes the solution of
(11), p ∈ {1, 2} specifies the norm, and λ is the user-
specified regularization weight. A principled justification for
this regularization strategy in the context of ‘distributionally
robust’ optimization is given in [12]; a similar strategy
is used in [13]. Tuning λ appropriately is essential for
good performance; however, in practice, this tuning must
be conducted by trial and error (though some qualitative
guidelines are provided in [13]). More principled methods
for tuning regularization parameters in data-enabled control
is an important and interesting direction for future research.

IV. NUMERICAL ILLUSTRATION

In this section we illustrate the advantages of the proposed
closed-loop DeePC approach compared to existing open-loop
DeePC. The true system to be controlled is of the form (1)



(nx = 4, nu = 1, nw = 1, ny = 1) with

f(x, u, w) =

[
θ′x+ c× φ(x(1)) + u+ 0.2w

Θx

]
,

φ(s) = 0.2s+ 0.1s2 + 0.6s3

y = x(1) + 0.05x(1)3 + 0.05w. (22)

For values of the parameters θ ∈ R4, Θ ∈ R3×4, c ∈ R, and
code to reproduce the examples in this paper, cf. [23].

The control task is as follows. The goal is to track a known
reference signal, r0:T , with T = 40, cf. Fig. 1. The cost
function minimized in the predictive control problem (9) is
‖ȳ − r‖1, where ȳ denotes the predicted output with nominal
disturbances w̄ = 0, cf. §III-D.4. The input and output
constraints, Ut and Yt, are |ut| ≤ 1 and yt ≤ 1.1 for all t,
respectively. The disturbances lie in the set W = {wt ∈ R |
|wt| ≤ 1}. In the initial data set D, wd constitute truncated
Gaussian white noise; however, during control, a low-pass
filter was applied (before truncation). The initial data set
D is generated by simulating the system, open-loop, for
N = 500 time-steps, excited by (non-truncated) unit variance
Gaussian noise as input. We compare three methods: i)
closed-loop: the closed-loop DeePC algorithm proposed
in the present paper, ii) open-loop: an open-loop DeePC
algorithm, similar to that proposed in [1], iii) non-robust:
an open-loop DeePC algorithm, similar to [11], which does
not take into consideration worst-case future disturbances;
i.e., constraints are only enforced for the nominal predicted
output ȳ. We emphasize that the only difference between
closed-loop and open-loop is that the former includes
decision variable K, cf. (10), whereas the latter has K ≡ 0.
As such, any differences in performance can be attributed
entirely to the presence/absence of disturbance feedback.
A prediction horizon of L = 10 is selected, and poli-
cies/input sequences are redesigned every 5 time steps. All
methods include a regularization term on (the approximate)
solution g to (6) in the optimization objective, specifically,
λ
∥∥Mπν +D⊥z

∥∥2

2
, with λ = 100, though performance was

qualitatively similar for λ ∈ [5, 500] We set Ti = 20, though
performance was similar for Ti ∈ [4, 50].

Results are presented in Fig. 1 and Table I. The
closed-loop policy achieves a 36% reduction (mean) in
tracking error (as measured by the 1-norm) compared to
the open-loop strategy. Although, the tracking error of
closed-loop is 4% larger than that of non-robust,
the latter violates the constraints in 90% of the experimental
trials (as it does not account for worst-case future distur-
bances), while the proposed method recorded no constraint
violations. The effect of feedback is transparent: after each
policy redesign, the open-loop strategy tends to move
away from the reference signal, when rt = 1 (i.e. close
to the constraint yt ≤ 1.1). This is necessary to ensure
that the response to the open-loop input sequence does not
violate the output constraint. In contrast, the closed-loop
strategy can respond to disturbances after the policy redesign,
enabling the system to remain closer to the constraint bound-
ary without violating the constraint. We mention in passing
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Fig. 1: Representative results from one of the trials in the numerical
experiment outlined in §IV. The closed-loop controller tracks the
reference signal more accurately than the open-loop controller, especially
when the reference signal is close to the constraint boundary, while avoiding
the constraint violations that occur with the non-robust controller.

TABLE I: Comparison of different controllers, as in §IV. Mean (std. dev.)
quantities are reported for 10 trails. ‘Violations’ denotes the proportion of
trials for which a constraint violation occurred. Programs parsed with [24],
solved with Mosek, using an Intel i7 with 16GB of RAM.

Method ‖y − r‖1 compute time (sec) violations
open-loop 11.5 (1.79) 0.115 (0.007) 0%
closed-loop 7.35 (0.985) 0.169 (0.0253) 0%
non-robust 7.09 (1.33) 0.123 (0.006) 90%

that introducing a lower bound on the output, namely yt ≥
ymin for all t, renders the open-loop synthesis problem
infeasible when ymin > −0.4 . Conversely, closed-loop
synthesis remains feasible, even with ymin = 0.

In closing, we remark that we do not consider this nu-
merical example to be conclusive evidence of the superiority
of the proposed approach, but rather an illustration of its
principal merits, namely: reduced conservatism when con-
straints must be satisfied despite disturbances, in situations
where the policy cannot be redesigned at every time-step.
Furthermore, the illustration compares only DeePC methods.
Rigorous benchmarking of data-enabled methods, such as
DeePC, against more conventional “identification + MPC”
approaches is an interesting and important direction for
future research, but beyond the scope of this paper.

V. CONCLUSION

This paper aspires to deliver the following key message:
if one wishes to apply the data-enabled predictive control
method of [1], then superior performance can likely be
achieved by employing the proposed closed-loop strategy.
Specifically, the closed-loop formulation is guaranteed to
return a solution at least as good as the open-loop for-
mulation, for a modest increase in computational effort.
Furthermore, the closed-loop method returns a policy that
reacts to disturbances, as opposed to a fixed, open-loop



sequence of inputs. Important and interesting directions for
future work include extending the approach to systems for
which disturbances are not directly measurable, as well as
principled, data-enabled methods for selecting regularization
parameters.

ON THE RELATIONSHIP TO [1]

For the purpose of garnering feedback, a draft of this
manuscript was shared with the authors of [1]. This cor-
respondence revealed that the authors of [1] were working,
entirely independently, on extending their method to incorpo-
rate disturbance feedback. The latest version of their preprint
now briefly addresses disturbance feedback, cf. [25, §IV.B].
Nevertheless, we believe the two approaches are sufficiently
different to warrant publication of the present manuscript.
Specifically, while the basic idea of disturbance feedback
appears in [25], none of the developments in §III-D are
present.
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