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Abstract— Recently Lagrangian relaxation has been used to
generate convex approximations of the challenging simulation
error minimization problem arising in system identification. In
this paper, we present a specialized algorithm to optimize the
convex bounds generated by Lagrangian relaxation, applicable
to linear state-space models. The algorithm demonstrates supe-
rior scalability over general-purpose semidefinite programming
solvers. In addition, we show empirically that Lagrangian
relaxation is more resilient to a biasing effect commonly
observed in other identification methods that guarantee model
stability.

I. INTRODUCTION

Linear time invariant (LTI) state-space models provide
a useful approximation of dynamical system behavior in a
multitude of applications. In some instances, models may be
derived from first-principles; however, when such physical
models are either unknown or too complex to be used for
efficient simulation or control design, some form of data-
driven modeling, i.e. system identification, is appropriate [1].

Two major problems in system identification are model
instability and non-convexity of the standard quality-of-fit
cost functions [2]. Subspace identification methods have been
very successful for identifying linear state-space models from
input-output data [3], [4]. However, the standard subspace
algorithms do not ensure model stability and the least-squares
model fit does not directly relate to long-term open-loop
simulation error (a.k.a output error).

Stability of identified state space models generated by
subspace identification was studied in [5], where it was noted
that stability can be enforced by inserting blocks of zeros
in the shifted state matrix. In [6] stability was imposed via
regularization, while LMI parametrizations of stable models
were given in [7]. In [8], a similar method allowed pole
locations to be constrained to polytopic convex sets.

In a series of recent papers a new approach was developed
for obtaining convex parameterizations of stable models and
convex upper-bounds for simulation error [9], [10], and
extended to problems with noisy data in [11], [12]. The
precursor to these methods was the work of [13] (see also
[14, Section 4]) which proposed a Lagrangian relaxation
of simulation error minimization for models with nonlin-
ear output feedback. Lagrangian relaxation (a.k.a the S-
procedure), is a technique used extensively in robust control
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to convert difficult constrained optimization problems to
tractable unconstrained approximations [15], [16].

In this work we apply the method of Lagrangian relaxation
to the identification of LTI state-space models. The main
contribution of this paper appears in Section IV where we
develop a specialized algorithm for Lagrangian relaxation
of simulation error minimization that is orders of magnitude
faster than generic semidefinite programing solvers, allowing
minimization of simulation error over longer time horizons,
and for models of higher dimension. Having proposed an
algorithm that makes Lagrangian relaxation computationally
tractable in practice, Section V presents evidence that this
approach is more resilient to a biasing effect observed in
other methods that guarantee stability, in which noisy data
leads to identified models that are ‘too stable’.

II. PRELIMINARIES

A. Notation

The cone of real, symmetric nonnegative (positive) definite
matrices is denoted by Sn+ (Sn++). The n×n identity matrix
is denoted In. Let vec : Rm×n 7→ Rmn denote the function
that stacks the columns of a matrix to produce a column
vector. The Kronecker product is denoted ⊗. The transpose
of a matrix a is denoted a′, and |a|2Q is shorthand for a′Qa.

B. Linear state-space models

This paper concerns the identification of discrete-time LTI
models of the form

xt+1 = Axt +But (1a)
yt = Cxt +Dut (1b)

where u ∈ Rnu , y ∈ Rny and x ∈ Rnx denote the
input, output and state, respectively. In particular, we are
interested in identifying stable models, for which A is Schur
(i.e. spectral radius less than unity). We denote all unknown
model parameters by the variable ζ = {A,B,C,D}.

C. Problem data

We assume data of the form ZT = {ũt, ỹt, x̃t}Tt=1 where
ũ, ỹ denote measurements of the observed input and output,
and x̃ denotes estimates of the, typically unobserved, state
variable. For linear systems, subspace methods are a popular
and effective approach to generating state estimates x̃ from
measured input/output data [4]. Furthermore, these methods
also yield effective estimates of the state dimension, nx.



D. Simulation error

In system identification, a common measure of model
quality, given a dataset ZT , is the simulation error, defined
E ,

∑T
t=1 |ỹt − yt|2 where yt represents the simulated

output, given by yt = CAt−1x̃1+Σt−1
τ=1CA

t−1−τBũτ+Dũt.
This dependence on the simulated output renders E a highly
nonlinear function of the model parameters.

E. Problem statement

In this paper, our goal is to search over all stable linear sys-
tems to find that which minimizes (globally) the simulation
error. Nonconvexity of the feasible set and nonlinearity of the
objective, make this is a challenging optimization problem
that we do not attempt to solve directly. Rather, we proceed
by applying the method of Lagrangian relaxation to obtain
a convex upper bound on simulation error.

III. LAGRANGIAN RELAXATION
The application of Lagrangian relaxation to identification

of dynamical systems was proposed in [13]. In this section
we recap the key ideas that underpin this approach and
present some new results specific to the LTI case.

A. Relaxation of simulation error minimization

Global minimization of simulation error, i.e. the problem

min
ζ,x

T∑
t=1

|ỹt − Cxt −Dũt|2

s.t. xt+1 = Axt +Bũt, x1 = x̃1

is made formidable by the highly nonconvex dependence of
feasible state sequences, x, on model parameters; specifically
xt = At−1x̃1+Σt−1

τ=1A
t−1−τBũτ . The Lagrangian relaxation

of this problem takes the form

Ĵλ(ζ) , sup
x

T∑
t=1

{|ỹt − Cxt −Dũt|2

−λt+1(xt+1)′(xt+1 −Axt −Bũt)} (2)

for a sequence of Lagrange multipliers, λt. Notice that the
multiplier λt(xt) is a function of the state variable; however,
for brevity, we drop xt from the notation. For arbitrary λ,
the function Ĵλ(ζ) has two key properties:

i. It is convex in ζ, as it is the supremum of an infinite
family of convex functions; see Section 3.2.3 of [17].

ii. It is an upper bound for the simulation error. To see this,
observe that if the supremizing x is such that xt+1 =
Axt + Bũt ∀t, then Ĵλ(ζ) = E , which implies that the
supremum over all x can be no smaller.

B. Implicit models and stability guarantees

It is known that formulating the Lagrangian relaxation
over equivalent constraints can give non-equivalent bounds.
In light of this, we search over the following class of implicit
models

Ext+1 = Fxt +Kut (3a)
yt = Cxt +Dut (3b)

where E is invertible, such that A = E−1F and B = E−1K.
Let θ = {E,F,K,C,D, P} denote the parameters of the
implicit model for which we shall search, along with a matrix
P ∈ Snx++, the role of which is explained in the sequel. The
bound then becomes

Ĵλ(θ) , sup
x

T∑
t=1

{|ỹt − Cxt −Dũt|2

−λt+1(xt+1)′(Ext+1 − Fxt −Kũt)}. (4)

One may interpret this formulation as that of (2) with
the multipliers E′λt, thereby allowing a (partial) search
for multipliers and model parameters simultaneously, while
preserving convexity.

Furthermore, this implicit representation permits the defi-
nition of a convex parametrization of all stable LTI models:

Lemma 1. Let Θ denote the set of all models θ of the form
(3) and P ∈ Snx++ that satisfy the LMI

M(θ) =

 E + E′ − P F ′ C ′

F P 0
C 0 I

 > 0 (5)

i.e. Θ , {θ : M(θ) > 0}.
Then a model ζ of the form (1) is stable iff there exists E

such that θ = {E,EA,EB,C,D, P} ∈ Θ.

Proof. Refer to [11, Section 3.2], in particular: Lemma 4
and Corollary 5.

C. Choice of multiplier and finiteness of bound
The quality of the bound given by (4) is highly dependent

on the choice of Lagrange multiplier, λ. Unfortunately, the
simultaneous search over θ and λ to minimize (4) is not
jointly convex, and thus the multiplier must be specified
in advance. Given an estimated state sequence {x̃t}Tt=1, we
consider multipliers of the form λt = xt − x̃t. This choice
of multiplier guarantees that the supremum in (4) is finite:

Lemma 2. Given any arbitrary sequence of vectors {x̃t}Tt=1,
the supremum in (4) is finite, for Lagrange multipliers λt =
xt − x̃t and θ ∈ Θ.

Furthermore, this choice of multiplier guarantees ‘tight-
ness’ of the bound Ĵλ under the following (idealized) cir-
cumstances:

Lemma 3. Let {x̃t, ỹt}Tt=1 denote simulated, noiseless states
and outputs of a stable model ζ∗ in response to an arbitrary
input {ũt}Tt=1. Then for any θ∗ ∈ Θ that represents an
equivalent implicit parametrization of ζ∗, we have Ĵλ(θ∗) =
0 with λt = xt − x̃t; i.e. the convex bound is tight.

Proofs of Lemmas 2 and 3 are straightforward and omitted
due to space restrictions.

D. Alternate problem formulation
To simplify the material in subsequent sections we refor-

mulate the Lagrangian relaxation in terms of ∆t = xt − x̃t
and the so-called equation errors:

εt = Fx̃t +Kũt − Ex̃t+1, ηt = Cx̃t +Dũt − ỹt.



Minimization of simulation error may now be formulated as

min
θ,∆

|G(θ)∆ + η(θ)|2 s.t F(θ)∆− ε(θ) = 0 (6)

where ∆ = vec([∆1, . . . ,∆T ]), η(θ) = vec([η1, . . . , ηT ]),
ε(θ) = vec([0, ε1, . . . , εT−1]), G(θ) = IT ⊗ C and

F(θ) =


E 0 0 . . .

−F E 0
. . .

0 −F E
. . .

...
. . . . . . . . .

 .
Defining the Lagrangian by

Jλ(θ,∆) = |G(θ)∆ + η(θ)|2 − 2∆′(F(θ)∆− ε(θ)) (7)

the function Ĵλ(θ) given in (4) is exactly equivalent to

Ĵλ(θ) = max
∆

Jλ(θ,∆). (8)

Notice that the sup in (4) can be replaced with a max in
(8) when θ ∈ Θ as Jλ(θ,∆) is a concave quadratic function
in ∆, by Lemma 2. This fact also leads to a closed form
expression for the maximizing ∆∗,

arg max
∆

Jλ(θ,∆) = −(G′G − F ′ −F)−1(G′η + ε). (9)

E. Optimization as a semidefinite program

The convex optimization problem minθ∈Θ Ĵλ(θ) can be
formulated as a SDP, for which there exist good general
purpose solvers. However, such a formulation introduces
many additional variables, which leads to poor scalability;
see, e.g., the results of Section IV-F. This motivates the
search for a more computationally tractable alternative to
SDP, which is the subject the following section.

IV. SPECIALIZED ALGORITHM
In this section we present the main contribution of this

paper: an efficient, scalable algorithm for optimization of
the Lagrangian relaxation, i.e. the problem minθ∈Θ Ĵλ(θ).
A complete listing is provided in Algorithm 1.

A. Path-following interior point method

Recall from Section III that the constraint θ ∈ Θ,
equivalent to the LMI M(θ) > 0, ensures both stability
of the identified model and a finite, analytical solution to
arg max∆ Jλ(θ,∆), which is needed to evaluate Ĵλ(θ). To
solve this constrained optimization problem, we employ a
path-following interior point method (see, e.g., [18]). The
basic idea is to introduce a barrier function that tends towards
infinity at the boundary of the feasible set. For the constraint
M(θ) > 0, the usual choice [18, §6.4] is

φ(θ) =

{
− log detM(θ) M(θ) > 0

∞ M(θ) ≯ 0
.

The barrier function, weighted by a scalar τ , is then added
to the objective Ĵλ(θ) and we solve a sequence of uncon-
strained optimization problems

min
θ

fτ (θ) = Ĵλ(θ) + τφ(θ)

for decreasing τ . In the specialized algorithm we propose,
each of these unconstrained optimization problems is solved
using a quasi-Newton method, which exploits the following
two insights:

i. The structure of Ĵλ(θ) permits an efficient computation
of the gradient.

ii. The structure of fτ (θ) permits an approximation of the
Hessian that combines BFGS estimation of ∇2Ĵλ with
analytical calculation of ∇2φ.

B. Initialization

Interior point methods are iterative algorithms, requir-
ing some initial parameter value θ0, often chosen to be
the analytic center. For the algorithm we propose, a valid
initialization may be obtained by generating an arbitrary
stable model (e.g., using Matlab’s drss function) and setting
E = P as the solution of the Lyapunov equation A′PA−P+
C ′C < 0 (solved, e.g., by Matlab’s dlyap function), leading
to θ0 = {P, PA, PB,C,D, P}. During experimentation, the
performance of the algorithm was insensitive to initialization
of τ ; we found τ0 = 104 to be an effective choice.

C. Gradient computation

The gradient of fτ (θ) w.r.t θ is given by

∇fτ (θ) = ∇Ĵλ(θ) + τ∇φ(θ). (10)

The gradient of φ(θ) is straightforward to compute. As
M(θ) is linear in θ, there exists an affine mapping such that
vec(M(θ)) = Aθ+b, where A and b are constant. Recall that
for g(Z) = log detZ, where Z ∈ S++, we have ∇g = Z−1,
and so by the chain rule

∇φ =

[
∂φ

∂θ1
, . . . ,

∂φ

∂θnθ

]′
= A′vec(M(θ)−1). (11)

Now we seek an expression for the gradient of Ĵλ(θ) at
a particular parameter θ0 ∈ Θ. From (8) we have Ĵλ(θ) =
Jλ(θ0,∆

∗) where ∆∗ is the solution to the linear system,
given by (9). The gradient is then given by

∂Ĵλ
∂θ

=
∂Jλ
∂θ

+
∂Jλ
∂∆

∂∆∗

∂θ
.

As ∆∗ is the maximizer of the smooth function Jλ(θ0,∆),
we have ∂Jλ

∂∆ = 0 at ∆ = ∆∗, and so

∂Ĵ

∂θ
=
∂Jλ
∂θ

∣∣∣∣
θ=θ0,∆=∆∗

. (12)

The key point is that neither ∂Jλ
∂∆ nor ∂∆∗

∂θ need be computed
to calculate the gradient of Ĵλ(θ), which now reduces to

∂Ĵ

∂θi
(θ) = 2(G∆∗ + η)′(Gi∆∗ + ηi)− 2(∆∗)′(Fi∆∗ − εi)

(13)
where Gi, ηi,Fi, εi denote ∂G

∂θi
, ∂η∂θi ,

∂F
∂θi
, ∂ε∂θi , respectively.



D. Hessian approximation

The Hessian of fτ (θ) w.r.t θ is given by

∇2fτ (θ) = ∇2Ĵλ(θ) + τ∇2φ(θ).

The Hessian of φ(θ) is also straightforward to compute, but
somewhat cumbersome to express. Let B : Sn 7→ Sn2

denote
the function that maps a symmetric matrix Z ∈ Sn to the
n × n block matrix, in which the (i, j)th block is given by
Z(:, j)Z(:, i)′, where Z(:, i) denotes the ith column of Z.
Then, by an application of the chain rule, the Hessian of the
barrier function is given by

∇2φ =

 ∂2φ
∂θ21

∂2φ
∂θ1∂θ2

. . .

...
. . .

 = A′B(M(θ)−1)A. (14)

The Hessian of Ĵλ(θ) involves, among other terms, ∂∆∗

∂θ .
Rather than compute this quantity directly, at each barrier
iteration we use an approximation that satisfies the secant
condition, as in BFGS (see, e.g., [19, Section 6.1])); refer to
Algorithm 1 (L18) for details.

E. Convergence

For each τ , ‘quasi-Newton’ iterations (L7-22) terminate
when at least one of the following convergence criteria
is satisfied: i) change in fτ (θ) is less than a prescribed
tolerance, δf ; ii) the maximum absolute value of an element
of ∇fτ (θ) is less than δg; iii) the step size αdk is less
than δf . The ‘barrier iterations’ (and thus, the algorithm)
terminate when the change in Ĵλ(θ) is less than a prescribed
tolerance, δJ . Recommended values for these parameters are
summarized in Table I.

TABLE I: Parameter values for Algorithm 1.

Parameter Description Value
τ0 Initial barrier weight 104

β Barrier weight division factor 50
δf Quasi-Newton objective tolerance 10−10

δg Quasi-Newton gradient tolerance 10−10

δJ Objective convergence tolerance 10−11

maxit Max no. of quasi-Newton iterations 104

F. Computation time compared to semidefinite programming

We conclude this section by comparing computation time
for the specialized Algorithm 1 with generic SDP solvers.
Each SDP was formulated with Yalmip [20] and solved
twice, once with SeDuMi [21] and again with Mosek
v7.0.0.119. Table II shows computation times for identifica-
tion SISO models of increasing order, nx. The problem data
was produced by models of order nx randomly generated
by Matlab’s drss function, and T = 400 data points were
used for identification. Tolerances were selected such that
each solver converged to the same solution.

Similarly, Table III records computation time for each
algorithm as the length of the training data set is increased.
Each trial consisted of fitting a 4th order model to a system
randomly generated by drss, of the same size. Notice that

TABLE II: Computation time (in seconds, to 3 s.f.) for varying model order
nx and T = 400, averaged over 5 trials.

Model size, nx 2 4 6 8
Specialized algorithm 2.48 9.41 27.6 70.1
Mosek 7.0.0.119 162 882 2550 7340
SeDuMi 319 2300 8200 22800

TABLE III: Computation time (in seconds, to 3 s.f.) for varying data length
T and nx = 4, averaged over 5 trials.

Data points, T 200 500 1000 2000
Specialized algorithm 4.76 11.6 22.9 73.7
Mosek 7.0.0.119 100 1750 16400 -
SeDuMi 211 6240 67300 -

for T ≥ 2000, both Mosek and SeDuMi failed to return a
solution.

It is clear that the proposed specialized algorithm demon-
strates vastly superior scalability compared to generic SDP
solvers. This improved performance makes Lagrangian relax-
ation computationally tractable in practice, particularly for
problems of higher model order and many data points.

V. CASE STUDIES

In this section we investigate the quality of models iden-
tified with Lagrangian relaxation as compared to subspace
identification with a model stability constraint [7].

A. Identification of randomly generated systems

To demonstrate the performance of Algorithm 1 on a wide
variety of models, we conducted the following numerical
experiment: Matlab’s drss function was used to randomly
generate forty 8th order SISO models. Each model was
simulated over T = 400 time steps to generate input/output
data {ũt, ỹt}Tt=1. A subspace algorithm was used obtain an
approximate state sequence {x̃t}Tt=1 in a balanced basis;
refer to [22] for details. 8th order models were then fit using
two methods: i) Lagrangian relaxation, and ii) equation error
subject to a model stability constraint, as in [7], henceforth
referred to as ‘stable subspace ID’. This process was repeated
eight times for each model, over four different SNR.

The results of this experiment are shown in Figure 1,
which records the validation error of each identified model,
defined as the simulation error for a new validation input
signal with no output noise, normalized by

∑T
t=1 |ỹt|2. It

is clear that models identified with Algorithm 1 outperform
those from stable subspace ID in the majority (86%) of trials.

B. Identification of a flexible beam

To gain further insight into the apparent superior per-
formance of the Lagrangian relaxation, we consider iden-
tification of a flexible beam, which serves as a useful
model of cantilever structures arising in many engineering
applications. In particular, we fit 8th order models to a 12th

order (6-link) beam model (see Figure 2 for Bode plot),
which introduces a degree of undermodeling that is prevalent
in practical applications. Once more, we compare models
from Lagrangian relaxation to stable subspace ID.



Algorithm 1 MIN-LAGRANGIAN(ZT )

1: Initialize θj = θ0 as described in Section IV-B
2: Initialize τ0 to some arbitrarily large value
3: Initialize approximate ∇2Ĵλ(θ0): B = Inθ
4: while |Ĵλ(θj)− Ĵλ(θj−1)| > δJ do
5: θk ← θj
6: Set fτ (θ) = Ĵ(θ) + τjφ(θ)
7: for k = 1 : maxit do
8: Compute ∇Ĵλ(θk) using (13)
9: Compute ∇φ(θk) using (11)

10: Form ∇fτ (θk) using (10)
11: Compute ∇2φ(θk) using (14)
12: Approximate ∇2fτ (θk) using ∇2Ĵλ(θk) ≈ B

Hk = B + τj∇2φ(θk)

13: Solve for search direction dk = −H−1
k ∇fτ (θk)

14: Compute the step length α by a backtracking line
search to satisfy the Wolfe conditions

15: Update the parameter estimate: θk+1 = θk+αdk
16: Set sk = θk+1 − θk
17: Set yk = ∇Ĵ(θk+1)−∇Ĵ(θk)
18: Update the approximation of ∇2Ĵ(θk+1)

B ← B − Bsks
′
kB

s′kBsk
+
yky
′
k

y′ksk

19: if |fτ (θk+1)− fτ (θk)| < δf or
‖∇fτ (θk+1)‖∞ < δg or
‖αdk‖∞ < δf then

20: θj ← θk and break
21: end if
22: end for
23: Set τj+1 = τj/β for some constant β
24: end while
25: return θj

Validation error, stable subspace ID
10-4 10-3 10-2 10-1

V
al

id
at

io
n 

er
ro

r,
 L

ag
ra

ng
ia

n

10-4

10-3

10-2

10-1
SNR = 200
SNR = 100
SNR = 50
SNR = 10

Fig. 1: Performance of Algorithm 1 compared with stable subspace ID for
the identification of forty 8th order SISO models, randomly generated by
Matlab’s drss function.
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The numerical experiment was conducted as follows: the
true model was simulated for T = 400 time steps, excited
by low-pass filtered white noise (of normalized signal power
for each 3dB cut-off frequency, ωc). The simulated output
was corrupted by additive Gaussian noise (of various SNR,
defined as the ratio of output signal power to output noise
variance). As above, approximate states in a balanced basis
were obtained by the subspace method of [22].

The results of this experiment are shown in Figure 3,
where it is clear that models identified by Lagrangian re-
laxation outperform those from stable subspace ID. Further
evidence of this is given in Figure 2, which shows (for a
typical case) that models from Lagrangian relaxation better
capture the dominant resonant peaks of the true model.
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Fig. 4: Pole locations of 8th order models fit to an 8th order flexible beam.
The small dots denote the poles of the true model, ‘×’ the poles of identified
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C. Resilience to biasing effect

In this section we suggest that the improved performance
of Lagrangian relaxation over other methods ensuring stabil-
ity, e.g. [7], is the result of greater resilience to a biasing
effect in which noisy data leads to models that are ‘too
stable’. This phenomenon, which is visible in Figure 2, is
more clearly demonstrated in Figure 4, where the poles of
models identified by stable subspace ID are shown to have
been shifted considerably towards the center of the unit
circle, compared to those of the models from Lagrangian
relaxation.

VI. CONCLUSION

This work has developed a specialized algorithm for
optimization of a Lagrangian relaxation of the simulation
error minimization problem for LTI state-space models.
This algorithm is more efficient than generic SDP solvers,
demonstrating vastly superior scalability with both model
dimension and number of data points used for identification.
In addition, Lagrangian relaxation was shown empirically
to be more resilient to a biasing effect observed in other
methods that ensure stability, e.g. [7]; this resilience resulted
in models that better captured resonant behavior.

Future research shall extend the specialized algorithm
to the identification of nonlinear systems, which may be
accomplished by considering Lagrangian relaxation of the
so-called ‘linearized simulation error’ (see [9, §1.E]). In
this setting, a key challenge is the expansion of the model
class to include nonlinear systems, one approach for which
introduces sum-of-squares constraints [9].

Finally, for identification of systems that include stochastic
disturbances in the state transition (1a), the recent work of
[23] proposed a reformulation of the expectation maximiza-
tion algorithm, which culminates in a large simulation error

minimization problem. A modified version of Algorithm
1 would enable application of [23] to systems of higher
dimension, and is the subject of current research.
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